The offcial repository for 'CharacterBERT and Self-Teaching for Improving the Robustness of Dense Retrievers on Queries with Typos', SIGIR2022

Overview

CharacterBERT-DR

The offcial repository for CharacterBERT and Self-Teaching for Improving the Robustness of Dense Retrievers on Queries with Typos, Shengyao Zhuang and Guido Zuccon, SIGIR2022

Installation

Our code is developed based on Tevatron DR training toolkit (v0.0.1).

First clone this repository and then install with pip: pip install --editable .

Note: The current code base has been tested with, torch==1.8.1, faiss-cpu==1.7.1, transformers==4.9.2, datasets==1.11.0, textattack=0.3.4

Preparing data and model

Typo queries and dataset

All the queries and qrels used in our paper are in the /data folder.

Download CharacterBERT

Download CharacterBERT trained with general domain with this link.

Train

CharacterBERT-DR + ST training

python -m tevatron.driver.train \
--model_name_or_path bert-base-uncased \
--character_bert_path ./general_character_bert \
--output_dir model_msmarco_characterbert_st \
--passage_field_separator [SEP] \
--save_steps 40000 \
--dataset_name Tevatron/msmarco-passage \
--fp16 \
--per_device_train_batch_size 16 \
--learning_rate 5e-6 \
--max_steps 150000 \
--dataloader_num_workers 10 \
--cache_dir ./cache \
--logging_steps 150 \
--character_query_encoder True \
--self_teaching True

If you want to do typo augmentation training introduced in our previous paper. Replace --self_teaching True with --typo_augmentation True.

If you want to train a standard BERT DR intead of CharacterBERT DR, remove --character_bert_path and --character_query_encoder arguments.

If you do not want to train the model, we provide our trained model checkpoints for you to download:

Model Checkpoints
StandardBERT-DR
StandardBERT-DR + Aug
StandardBERT-DR + ST
CharacterBERT-DR
CharacterBERT-DR + Aug
CharacterBERT-DR + ST

Inference

Encode queries and corpus

After you have the trained model, you can run the following command to encode queries and corpus into dense vectors:

mkdir msmarco_charcterbert_st_embs
# encode query
python -m tevatron.driver.encode \
  --output_dir=temp \
  --model_name_or_path model_msmarco_characterbert_st/checkpoint-final \
  --fp16 \
  --per_device_eval_batch_size 128 \
  --encode_in_path data/dl-typo/query.typo.tsv \
  --encoded_save_path msmarco_charcterbert_st_embs/query_dltypo_typo_emb.pkl \
  --q_max_len 32 \
  --encode_is_qry \
  --character_query_encoder True


# encode corpus
for s in $(seq -f "%02g" 0 19)
do
python -m tevatron.driver.encode \
  --output_dir=temp \
  --model_name_or_path model_msmarco_characterbert_st/checkpoint-final \
  --fp16 \
  --per_device_eval_batch_size 128 \
  --p_max_len 128 \
  --dataset_name Tevatron/msmarco-passage-corpus \
  --encoded_save_path model_msmarco_characterbert_st/corpus_emb.${s}.pkl \
  --encode_num_shard 20 \
  --encode_shard_index ${s} \
  --cache_dir cache \
  --character_query_encoder True \
  --passage_field_separator [SEP]
done

If you are using our provided model checkpoints, change --model_name_or_path to the downloaded model path. If you running inference with standard BERT, remove --character_query_encoder True argument.

Retrieval

Run the following commands to generate ranking file and convert it to TREC format:

python -m tevatron.faiss_retriever \
--query_reps model_msmarco_characterbert_st/query_dltypo_typo_emb.pkl \
--passage_reps model_msmarco_characterbert_st/'corpus_emb.*.pkl' \
--depth 1000 \
--batch_size -1 \
--save_text \
--save_ranking_to character_bert_st_dltypo_typo_rank.txt


python -m tevatron.utils.format.convert_result_to_trec \
              --input character_bert_st_dltypo_typo_rank.txt \
              --output character_bert_st_dltypo_typo_rank.txt.trec

Evaluation

We use trec_eval to evaluate the results:

trec_eval -l 2 -m ndcg_cut.10 -m map -m recip_rank data/dl-typo/qrels.txt character_bert_st_dltypo_typo_rank.txt.trec

If you use our provided CharacterBERT-DR + ST checkpoint, you will get:

map                     all     0.3483
recip_rank              all     0.6154
ndcg_cut_10             all     0.4730

We note that if you train the model by yourself, you may get slightly different results due to the randomness of dataloader and Tevatron self-contained msmarco-passage training dataset has been updated. We also note that, for our DL-typo dataset, the top10 passages are all judged in the ranking file generated by our provided checkpoints. Hence newly trained model may not comparable as there will be unjudged top10 passages in its ranking file.

Owner
ielab
The Information Engineering Lab
ielab
DARTS-: Robustly Stepping out of Performance Collapse Without Indicators

[ICLR'21] DARTS-: Robustly Stepping out of Performance Collapse Without Indicators [openreview] Authors: Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun

55 Nov 01, 2022
InferPy: Deep Probabilistic Modeling with Tensorflow Made Easy

InferPy: Deep Probabilistic Modeling Made Easy InferPy is a high-level API for probabilistic modeling written in Python and capable of running on top

PGM-Lab 141 Oct 13, 2022
Rank 1st in the public leaderboard of ScanRefer (2021-03-18)

InstanceRefer InstanceRefer: Cooperative Holistic Understanding for Visual Grounding on Point Clouds through Instance Multi-level Contextual Referring

63 Dec 07, 2022
Repo for the ACMMM20 submission: "Personalized breath based biometric authentication with wearable multimodality".

personalized-breath Repo for the ACMMM20 submission: "Personalized breath based biometric authentication with wearable multimodality". Guideline To ex

Manh-Ha Bui 2 Nov 15, 2021
Autoregressive Predictive Coding: An unsupervised autoregressive model for speech representation learning

Autoregressive Predictive Coding This repository contains the official implementation (in PyTorch) of Autoregressive Predictive Coding (APC) proposed

iamyuanchung 173 Dec 18, 2022
Array Camera Ptychography

Array Camera Ptychography This repository provides the code for the following papers: Schulz, Timothy J., David J. Brady, and Chengyu Wang. "Photon-li

Brady lab in Optical Sciences 1 Nov 15, 2021
Implementation of the state-of-the-art vision transformers with tensorflow

ViT Tensorflow This repository contains the tensorflow implementation of the state-of-the-art vision transformers (a category of computer vision model

Mohammadmahdi NouriBorji 2 Mar 16, 2022
A embed able annotation tool for end to end cross document co-reference

CoRefi CoRefi is an emebedable web component and stand alone suite for exaughstive Within Document and Cross Document Coreference Anntoation. For a de

PythicCoder 39 Dec 12, 2022
AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人

paddle-wechaty-Zodiac AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人 12星座若穿越科幻剧,会拥有什么超能力呢?快来迎接你的专属超能力吧! 现在很多年轻人都喜欢看科幻剧,像是复仇者系列,里面有很多英雄、超

105 Dec 22, 2022
RoboDesk A Multi-Task Reinforcement Learning Benchmark

RoboDesk A Multi-Task Reinforcement Learning Benchmark If you find this open source release useful, please reference in your paper: @misc{kannan2021ro

Google Research 66 Oct 07, 2022
CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable.

CausalNLP CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable. Install pip install -U

Arun S. Maiya 95 Jan 03, 2023
Контрольная работа по математическим методам машинного обучения

ML-MathMethods-Test Контрольная работа по математическим методам машинного обучения. Вычисление основных статистик, диаграмм и графиков, проверка разл

Stas Ivanovskii 1 Jan 06, 2022
The GitHub repository for the paper: “Time Series is a Special Sequence: Forecasting with Sample Convolution and Interaction“.

SCINet This is the original PyTorch implementation of the following work: Time Series is a Special Sequence: Forecasting with Sample Convolution and I

386 Jan 01, 2023
An 16kHz implementation of HiFi-GAN for soft-vc.

HiFi-GAN An 16kHz implementation of HiFi-GAN for soft-vc. Relevant links: Official HiFi-GAN repo HiFi-GAN paper Soft-VC repo Soft-VC paper Example Usa

Benjamin van Niekerk 42 Dec 27, 2022
Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project

Semantic Code Search Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project. The model

Chen Wu 24 Nov 29, 2022
Machine learning evaluation metrics, implemented in Python, R, Haskell, and MATLAB / Octave

Note: the current releases of this toolbox are a beta release, to test working with Haskell's, Python's, and R's code repositories. Metrics provides i

Ben Hamner 1.6k Dec 26, 2022
REBEL: Relation Extraction By End-to-end Language generation

REBEL: Relation Extraction By End-to-end Language generation This is the repository for the Findings of EMNLP 2021 paper REBEL: Relation Extraction By

Babelscape 222 Jan 06, 2023
This repository provides a PyTorch implementation and model weights for HCSC (Hierarchical Contrastive Selective Coding)

HCSC: Hierarchical Contrastive Selective Coding This repository provides a PyTorch implementation and model weights for HCSC (Hierarchical Contrastive

YUANFAN GUO 111 Dec 20, 2022
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022
AlphaBot2 Pi Core software for interfacing with the various components.

AlphaBot2-Pi-Core AlphaBot2 Pi Core software for interfacing with the various components. This project is currently a W.I.P. I will update this readme

KyleDev 1 Feb 13, 2022