The pytorch implementation of the paper "text-guided neural image inpainting" at MM'2020

Overview

TDANet: Text-Guided Neural Image Inpainting, MM'2020 (Oral)

MM | ArXiv

This repository implements the paper "Text-Guided Neural Image Inpainting" by Lisai Zhang, Qingcai Chen, Baotian Hu and Shuoran Jiang. Given one masked image, the proposed TDANet generates diverse plausible results according to guidance text.

Inpainting example

Manipulation Extension example

Getting started

Installation

This code was tested with Pytoch 1.2.0, CUDA 10.1, Python 3.6 and Ubuntu 16.04 with a 2080Ti GPU

pip install visdom dominate
  • Clone this repo (we suggest to only clone the depth 1 version):
git clone https://github.com/idealwhite/tdanet --depth 1
cd tdanet
  • Download the dataset and pre-processed files as in following steps.

Datasets

  • CUB_200: dataset from Caltech-UCSD Birds 200.
  • COCO: object detection 2014 datset from MS COCO.
  • pre-processed datafiles: train/test split, caption-image mapping, image sampling and pre-trained DAMSM from GoogleDrive and extarct them to dataset/ directory as specified in config.bird.yml/config.coco.yml.

Training Demo

python train.py --name tda_bird  --gpu_ids 0 --model tdanet --mask_type 0 1 2 3 --img_file ./datasets/CUB_200_2011/train.flist --mask_file ./datasets/CUB_200_2011/train_mask.flist --text_config config.bird.yml
  • Important: Add --mask_type in options/base_options.py for different training masks. --mask_file path is needed for object mask, use train_mask.flist for CUB and image_mask_coco_all.json for COCO. --text_config refer to the yml configuration file for text setup, --img_file is the image file dir or file list.
  • To view training results and loss plots, run python -m visdom.server and copy the URL http://localhost:8097.
  • Training models will be saved under the ./checkpoints folder.
  • More training options can be found in ./options folder.
  • Suggestion: use mask type 0 1 2 3 for CUB dataset and 0 1 2 4 for COCO dataset. Train more than 2000 epochs for CUB and 200 epochs for COCO.

Evaluation Demo

Test

python test.py --name tda_bird  --img_file datasets/CUB_200_2011/test.flist --results_dir results/tda_bird  --mask_file datasets/CUB_200_2011/test_mask.flist --mask_type 3 --no_shuffle --gpu_ids 0 --nsampling 1 --no_variance

Note:

  • Remember to add the --no_variance option to get better performance.
  • For COCO object mask, use image_mask_coco_all.json as the mask file..

A eval_tda_bird.flist will be generated after the test. Then in the evaluation, this file is used as the ground truth file list:

python evaluation.py --batch_test 60 --ground_truth_path eval_tda_bird.flist --save_path results/tda_bird
  • Add --ground_truth_path to the dir of ground truth image path or list. --save_path as the result dir.

Pretrained Models

Download the pre-trained models bird inpainting or coco inpainting and put them undercheckpoints/ directory.

GUI

  • Install the PyQt5 for GUI operation
pip install PyQt5

The GUI could now only avaliable in debug mode, please refer to this issues for detailed instructions. The author is not good at solving PyQt5 problems, wellcome contrbutions.

TODO

  • Debug the GUI application
  • Further improvement on COCO quality.

License

This software is for educational and academic research purpose only. If you wish to obtain a commercial royalty bearing license to this software, please contact us at [email protected].

Acknowledge

We would like to thanks Zheng et al. for providing their source code. This project is fit from their greate Pluralistic Image Completion Project.

Citation

If you use this code for your research, please cite our paper.

@inproceedings{10.1145/3394171.3414017,
author = {Zhang, Lisai and Chen, Qingcai and Hu, Baotian and Jiang, Shuoran},
title = {Text-Guided Neural Image Inpainting},
year = {2020},
booktitle = {Proceedings of the 28th ACM International Conference on Multimedia},
pages = {1302–1310},
location = {Seattle, WA, USA},
}
Owner
LisaiZhang
Enjoy thinking about everything.
LisaiZhang
A PyTorch implementation of DenseNet.

A PyTorch Implementation of DenseNet This is a PyTorch implementation of the DenseNet-BC architecture as described in the paper Densely Connected Conv

Brandon Amos 771 Dec 15, 2022
This program will stylize your photos with fast neural style transfer.

Neural Style Transfer (NST) Using TensorFlow Demo TensorFlow TensorFlow is an end-to-end open source platform for machine learning. It has a comprehen

Ismail Boularbah 1 Aug 08, 2022
GE2340 project source code without credentials.

GE2340-Project-Public GE2340 project source code without credentials. Run the bot.py to start the bot Telegram: @jasperwong_ge2340_bot If the bot does

0 Feb 10, 2022
BRNet - code for Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss function

BRNet code for "Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss func

Yong Pi 2 Mar 09, 2022
IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL.

IJON SPACE EXPLORER IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL. Using only a small (usually one line) annotati

Chair for Sys­tems Se­cu­ri­ty 146 Dec 16, 2022
The official MegEngine implementation of the ICCV 2021 paper: GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning

[ICCV 2021] GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning This is the official implementation of our ICCV2021 paper GyroFlow. Our pres

MEGVII Research 36 Sep 07, 2022
A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi

LSTM-Time-Series-Prediction A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi Contest. The Link of the Cont

KevinCHEN 1 Jun 13, 2022
Reinforcement Learning Theory Book (rus)

Reinforcement Learning Theory Book (rus)

qbrick 206 Nov 27, 2022
Histocartography is a framework bringing together AI and Digital Pathology

Documentation | Paper Welcome to the histocartography repository! histocartography is a python-based library designed to facilitate the development of

155 Nov 23, 2022
Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation

Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation Overview This example will show how to validate the status of our firewall before and a

Calvin Remsburg 1 Jan 07, 2022
PaddlePaddle GAN library, including lots of interesting applications like First-Order motion transfer, wav2lip, picture repair, image editing, photo2cartoon, image style transfer, and so on.

English | 简体中文 PaddleGAN PaddleGAN provides developers with high-performance implementation of classic and SOTA Generative Adversarial Networks, and s

6.4k Jan 09, 2023
This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool

OpenSurfaces Segmentation UI This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool.

Sean Bell 66 Jul 11, 2022
C3D is a modified version of BVLC caffe to support 3D ConvNets.

C3D C3D is a modified version of BVLC caffe to support 3D convolution and pooling. The main supporting features include: Training or fine-tuning 3D Co

Meta Archive 1.1k Nov 14, 2022
Exporter for Storage Area Network (SAN)

SAN Exporter Prometheus exporter for Storage Area Network (SAN). We all know that each SAN Storage vendor has their own glossary of terms, health/perf

vCloud 32 Dec 16, 2022
This is a library for training and applying sparse fine-tunings with torch and transformers.

This is a library for training and applying sparse fine-tunings with torch and transformers. Please refer to our paper Composable Sparse Fine-Tuning f

Cambridge Language Technology Lab 37 Dec 30, 2022
N-RPG - Novel role playing game da turfu

N-RPG Ce README sera la page de garde du projet. Contenu Il contiendra la présen

4 Mar 15, 2022
Image Fusion Transformer

Image-Fusion-Transformer Platform Python 3.7 Pytorch =1.0 Training Dataset MS-COCO 2014 (T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ram

Vibashan VS 68 Dec 23, 2022
WatermarkRemoval-WDNet-WACV2021

WatermarkRemoval-WDNet-WACV2021 Thank you for your attention. Citation Please cite the related works in your publications if it helps your research: @

LUYI 63 Dec 05, 2022
PyTorch implementation of DCT fast weight RNNs

DCT based fast weights This repository contains the official code for the paper: Training and Generating Neural Networks in Compressed Weight Space. T

Kazuki Irie 4 Dec 24, 2022
BackgroundRemover lets you Remove Background from images and video with a simple command line interface

BackgroundRemover BackgroundRemover is a command line tool to remove background from video and image, made by nadermx to power https://BackgroundRemov

Johnathan Nader 1.7k Dec 30, 2022