Continual World is a benchmark for continual reinforcement learning

Overview

Continual World

Continual World is a benchmark for continual reinforcement learning. It contains realistic robotic tasks which come from MetaWorld.

The core of our benchmark is CW20 sequence, in which 20 tasks are run, each with budget of 1M steps.

We provide the complete source code for the benchmark together with the tested algorithms implementations and code for producing result tables and plots.

See also the paper and the website.

CW20 sequence

Installation

You can either install directly in Python environment (like virtualenv or conda), or build containers -- Docker or Singularity.

Standard installation (directly in environment)

First, you'll need MuJoCo simulator. Please follow the instructions from mujoco_py package. As MuJoCo has been made freely available, you can obtain a free license here.

Next, go to the main directory of this repo and run

pip install .

Alternatively, if you want to install in editable mode, run

pip install -e .

Docker image

  • To build the image with continualworld package installed inside, run docker build . -f assets/Dockerfile -t continualworld

  • To build the image WITHOUT the continualworld package but with all the dependencies installed, run docker build . -f assets/Dockerfile -t continualworld --build-arg INSTALL_CW_PACKAGE=false

When the image is ready, you can run

docker run -it continualworld bash

to get inside the image.

Singularity image

  • To build the image with continualworld package installed inside, run singularity build continualworld.sif assets/singularity.def

  • To build the image WITHOUT the continualworld package but with all the dependencies installed, run singularity build continualworld.sif assets/singularity_only_deps.def

When the image is ready, you can run

singularity shell continualworld.sif

to get inside the image.

Running

You can run single task, continual learning or multi-task learning experiments with run_single.py, run_cl.py , run_mt.py scripts, respectively.

To see available script arguments, run with --help option, e.g.

python3 run_single.py --help

Examples

Below are given example commands that will run experiments with a very limited scale.

Single task

python3 run_single.py --seed 0 --steps 2e3 --log_every 250 --task hammer-v1 --logger_output tsv tensorboard

Continual learning

python3 run_cl.py --seed 0 --steps_per_task 2e3 --log_every 250 --tasks CW20 --cl_method ewc --cl_reg_coef 1e4 --logger_output tsv tensorboard

Multi-task learning

python3 run_mt.py --seed 0 --steps_per_task 2e3 --log_every 250 --tasks CW10 --use_popart True --logger_output tsv tensorboard

Reproducing the results from the paper

Commands to run experiments that reproduce main results from the paper can be found in examples/paper_cl_experiments.sh, examples/paper_mt_experiments.sh and examples/paper_single_experiments.sh. Because of number of different runs that these files contain, it is infeasible to just run it in sequential manner. We hope though that these files will be helpful because they precisely specify what needs to be run.

After the logs from runs are gathered, you can produce tables and plots - see the section below.

Producing result tables and plots

After you've run experiments and you have saved logs, you can run the script to produce result tables and plots:

python produce_results.py --cl_logs examples/logs/cl --mtl_logs examples/logs/mtl --baseline_logs examples/logs/baseline

In this command, respective arguments should be replaced for paths to directories containing logs from continual learning experiments, multi-task experiments and baseline (single-task) experiments. Each of these should be a directory inside which there are multiple experiments, for different methods and/or seeds. You can see the directory structure in the example logs included in the command above.

Results will be produced and saved on default to the results directory.

Alternatively, check out nb_produce_results.ipynb notebook to see plots and tables in the notebook.

Download our saved logs and produce results

You can download logs of experiments to reproduce paper's results from here. Then unzip the file and run

python produce_results.py --cl_logs saved_logs/cl --mtl_logs saved_logs/mt --baseline_logs saved_logs/single

to produce tables and plots.

As a result, a csv file with results will be produced, as well as the plots, like this one (and more!):

average performance

Full output can be found here.

Acknowledgements

Continual World heavily relies on MetaWorld.

The implementation of SAC used in our code comes from Spinning Up in Deep RL.

Our research was supported by the PLGrid infrastructure.

Our experiments were managed using Neptune.

A demo of how to use JAX to create a simple gravity simulation

JAX Gravity This repo contains a demo of how to use JAX to create a simple gravity simulation. It uses JAX's experimental ode package to solve the dif

Cristian Garcia 16 Sep 22, 2022
Bridging Vision and Language Model

BriVL BriVL (Bridging Vision and Language Model) 是首个中文通用图文多模态大规模预训练模型。BriVL模型在图文检索任务上有着优异的效果,超过了同期其他常见的多模态预训练模型(例如UNITER、CLIP)。 BriVL论文:WenLan: Bridgi

235 Dec 27, 2022
RefineMask (CVPR 2021)

RefineMask: Towards High-Quality Instance Segmentation with Fine-Grained Features (CVPR 2021) This repo is the official implementation of RefineMask:

Gang Zhang 191 Jan 07, 2023
[ICML 2020] DrRepair: Learning to Repair Programs from Error Messages

DrRepair: Learning to Repair Programs from Error Messages This repo provides the source code & data of our paper: Graph-based, Self-Supervised Program

Michihiro Yasunaga 155 Jan 08, 2023
A PyTorch implementation of DenseNet.

A PyTorch Implementation of DenseNet This is a PyTorch implementation of the DenseNet-BC architecture as described in the paper Densely Connected Conv

Brandon Amos 771 Dec 15, 2022
PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks

Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks. Code, based on the PyTorch framework, for reprodu

Asaf 3 Dec 27, 2022
Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US simulation

AutomaticUSnavigation Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US

Cesare Magnetti 6 Dec 05, 2022
KIND: an Italian Multi-Domain Dataset for Named Entity Recognition

KIND (Kessler Italian Named-entities Dataset) KIND is an Italian dataset for Named-Entity Recognition. It contains more than one million tokens with t

Digital Humanities 5 Jun 21, 2022
Regulatory Instruments for Fair Personalized Pricing.

Fair pricing Source code for WWW 2022 paper Regulatory Instruments for Fair Personalized Pricing. Installation Requirements Linux with Python = 3.6 p

Renzhe Xu 6 Oct 26, 2022
A Python script that creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editing software such as FinalCut Pro for further adjustments.

Text to Subtitles - Python This python file creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editin

Dmytro North 9 Dec 24, 2022
The mini-MusicNet dataset

mini-MusicNet A music-domain dataset for multi-label classification Music transcription is sequence-to-sequence prediction problem: given an audio per

John Thickstun 4 Nov 09, 2022
This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.

Self Driving Car An autonomous car (also known as a driverless car, self-driving car, and robotic car) is a vehicle that is capable of sensing its env

Sagor Saha 4 Sep 04, 2021
Evolutionary Scale Modeling (esm): Pretrained language models for proteins

Evolutionary Scale Modeling This repository contains code and pre-trained weights for Transformer protein language models from Facebook AI Research, i

Meta Research 1.6k Jan 09, 2023
Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation in PyTorch

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Ima

Xuanchi Ren 86 Dec 07, 2022
Official implementation of "OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Temporal Association" in PyTorch.

openpifpaf Continuously tested on Linux, MacOS and Windows: New 2021 paper: OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Te

VITA lab at EPFL 50 Dec 29, 2022
KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)

KoGPT KoGPT (Korean Generative Pre-trained Transformer) https://github.com/kakaobrain/kogpt https://huggingface.co/kakaobrain/kogpt Model Descriptions

Kakao Brain 799 Dec 28, 2022
ruptures: change point detection in Python

Welcome to ruptures ruptures is a Python library for off-line change point detection. This package provides methods for the analysis and segmentation

Charles T. 1.1k Jan 03, 2023
Xview3 solution - XView3 challenge, 2nd place solution

Xview3, 2nd place solution https://iuu.xview.us/ test split aggregate score publ

Selim Seferbekov 24 Nov 23, 2022
Ankou: Guiding Grey-box Fuzzing towards Combinatorial Difference

Ankou Ankou is a source-based grey-box fuzzer. It intends to use a more rich fitness function by going beyond simple branch coverage and considering t

SoftSec Lab 54 Dec 24, 2022
Telegram chatbot created with deep learning model (LSTM) and telebot library.

Telegram chatbot Telegram chatbot created with deep learning model (LSTM) and telebot library. Description This program will allow you to create very

1 Jan 04, 2022