Official PyTorch Implementation of "Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs". NeurIPS 2020.

Overview

Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs

This repository is the implementation of SELAR.

Dasol Hwang* , Jinyoung Park* , Sunyoung Kwon, Kyung-min Kim, Jung-Woo Ha, Hyunwoo J. Kim, Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs, In Advanced in Neural Information Processing Systems (NeurIPS 2020).

Data Preprocessing

We used datasets from KGNN-LS and RippleNet for link prediction. Download meta-paths label (meta_labels/) from this link.

  • data/music/

    • ratings_final.npy : preprocessed rating file released by KGNN-LS;
    • kg_final.npy : knowledge graph file;
      • meta_labels/
        • pos_meta{}_{}.pickle : meta-path positive label for auxiliary task
        • neg_meta{}_{}.pickle : meta-path negative label for auxiliary task
  • data/book/

    • ratings_final.npy : preprocessed rating file released by RippleNet;
    • kg_final.npy : knowledge graph file;
      • meta_labels/
        • pos_meta{}_{}.pickle : meta-path positive label for auxiliary task
        • neg_meta{}_{}.pickle : meta-path negative label for auxiliary task

Required packages

A list of dependencies will need to be installed in order to run the code. We provide the dependency yaml file (env.yml)

$ conda env create -f env.yml

Running the code

# check optional arguments [-h]
$ python main_music.py
$ python main_book.py

Overview of the results of link prediction

Last-FM (Music)

Base GNNs Vanilla w/o MP w/ MP SELAR SELAR+Hint
GCN 0.7963 0.7899 0.8235 0.8296 0.8121
GAT 0.8115 0.8115 0.8263 0.8294 0.8302
GIN 0.8199 0.8217 0.8242 0.8361 0.8350
SGC 0.7703 0.7766 0.7718 0.7827 0.7975
GTN 0.7836 0.7744 0.7865 0.7988 0.8067

Book-Crossing (Book)

Base GNNs Vanilla w/o MP w/ MP SELAR SELAR+Hint
GCN 0.7039 0.7031 0.7110 0.7182 0.7208
GAT 0.6891 0.6968 0.7075 0.7345 0.7360
GIN 0.6979 0.7210 0.7338 0.7526 0.7513
SGC 0.6860 0.6808 0.6792 0.6902 0.6926
GTN 0.6732 0.6758 0.6724 0.6858 0.6850

Citation

@inproceedings{NEURIPS2020_74de5f91,
 author = {Hwang, Dasol and Park, Jinyoung and Kwon, Sunyoung and Kim, KyungMin and Ha, Jung-Woo and Kim, Hyunwoo J},
 booktitle = {Advances in Neural Information Processing Systems},
 editor = {H. Larochelle and M. Ranzato and R. Hadsell and M. F. Balcan and H. Lin},
 pages = {10294--10305},
 publisher = {Curran Associates, Inc.},
 title = {Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs},
 url = {https://proceedings.neurips.cc/paper/2020/file/74de5f915765ea59816e770a8e686f38-Paper.pdf},
 volume = {33},
 year = {2020}
}

License

Copyright (c) 2020-present NAVER Corp. and Korea University 
Owner
MLV Lab (Machine Learning and Vision Lab at Korea University)
MLV Lab (Machine Learning and Vision Lab at Korea University)
Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions"

Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions" Environment requirement This code is based on Python

Rohan Kumar Gupta 1 Dec 19, 2021
Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based Analysis Framework"

Privacy-Aware Inverse RL (PRIL) Analysis Framework Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based

1 Dec 06, 2021
This repository contains code to run experiments in the paper "Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers."

Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers This repository contains code to run experiments in the paper "Signal Stre

0 Jan 19, 2022
Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting

QAConv Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting This PyTorch code is proposed in

Shengcai Liao 166 Dec 28, 2022
NAACL'2021: Factual Probing Is [MASK]: Learning vs. Learning to Recall

OptiPrompt This is the PyTorch implementation of the paper Factual Probing Is [MASK]: Learning vs. Learning to Recall. We propose OptiPrompt, a simple

Princeton Natural Language Processing 150 Dec 20, 2022
Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time.

BBB Face Recognizer Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time. Instalati

Rafael Azevedo 232 Dec 24, 2022
Dynamic Attentive Graph Learning for Image Restoration, ICCV2021 [PyTorch Code]

Dynamic Attentive Graph Learning for Image Restoration This repository is for GATIR introduced in the following paper: Chong Mou, Jian Zhang, Zhuoyuan

Jian Zhang 84 Dec 09, 2022
Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Mahmoud Afifi 22 Nov 08, 2022
Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time".

FastBERT Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time". Good News 2021/10/29 - Code: Code of FastPLM is released on

Weijie Liu 584 Jan 02, 2023
A Fast Sequence Transducer Implementation with PyTorch Bindings

transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur

Awni Hannun 184 Dec 18, 2022
Official project repository for 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination'

NCAE_UAD Official project repository of 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination' Abstract In this p

Jongmin Andrew Yu 2 Feb 10, 2022
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

MOSES 656 Dec 29, 2022
A PyTorch implementation of EfficientDet.

A PyTorch impl of EfficientDet faithful to the original Google impl w/ ported weights

Ross Wightman 1.4k Jan 07, 2023
Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Eleftheriadis Emmanouil 1 Oct 09, 2021
A framework to train language models to learn invariant representations.

Invariant Language Modeling Implementation of the training for invariant language models. Motivation Modern pretrained language models are critical co

6 Nov 16, 2022
BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition 2022)

BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition

Rui Qian 17 Dec 12, 2022
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 Oral paper PiCO; also see our Project

王皓波 147 Jan 07, 2023
A general-purpose, flexible, and easy-to-use simulator alongside an OpenAI Gym trading environment for MetaTrader 5 trading platform (Approved by OpenAI Gym)

gym-mtsim: OpenAI Gym - MetaTrader 5 Simulator MtSim is a simulator for the MetaTrader 5 trading platform alongside an OpenAI Gym environment for rein

Mohammad Amin Haghpanah 184 Dec 31, 2022
An open source library for face detection in images. The face detection speed can reach 1000FPS.

libfacedetection This is an open source library for CNN-based face detection in images. The CNN model has been converted to static variables in C sour

Shiqi Yu 11.4k Dec 27, 2022