[ICCV 2021] HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration

Related tags

Deep LearningHRegNet
Overview

HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration

Introduction

The repository contains the source code and pre-trained models of our paper (published on ICCV 2021): HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration.

The overall network architecture is shown below:

Environments

The code mainly requires the following libraries and you can check requirements.txt for more environment requirements.

Please run the following commands to install point_utils

cd models/PointUtils
python setup.py install

Training device: NVIDIA RTX 3090

Datasets

The point cloud pairs list and the ground truth relative transformation are stored in data/kitti_list and data/nuscenes_list. The data of the two datasets should be organized as follows:

KITTI odometry dataset

DATA_ROOT
├── 00
│   ├── velodyne
│   ├── calib.txt
├── 01
├── ...

NuScenes dataset

DATA_ROOT
├── v1.0-trainval
│   ├── maps
│   ├── samples
│   │   ├──LIDAR_TOP
│   ├── sweeps
│   ├── v1.0-trainval
├── v1.0-test
│   ├── maps
│   ├── samples
│   │   ├──LIDAR_TOP
│   ├── sweeps
│   ├── v1.0-test

Train

The training of the whole network is divided into two steps: we firstly train the feature extraction module and then train the network based on the pretrain features.

Train feature extraction

  • Train keypoints detector by running sh scripts/train_kitti_det.sh or sh scripts/train_nusc_det.sh, please reminder to specify the GPU,DATA_ROOT,CKPT_DIR,RUNNAME,WANDB_DIR in the scripts.
  • Train descriptor by running sh scripts/train_kitti_desc.sh or sh scripts/train_nusc_desc.sh, please reminder to specify the GPU,DATA_ROOT,CKPT_DIR,RUNNAME,WANDB_DIR and PRETRAIN_DETECTOR in the scripts.

Train the whole network

Train the network by running sh scripts/train_kitti_reg.sh or sh scripts/train_nusc_reg.sh, please reminder to specify the GPU,DATA_ROOT,CKPT_DIR,RUNNAME,WANDB_DIR and PRETRAIN_FEATS in the scripts.

Update: Pretrained weights for detector and descriptor are provided in ckpt/pretrained. If you want to train descriptor, you can set PRETRAIN_DETECTOR to DATASET_keypoints.pth. If you want to train the whole network, you can set PRETRAIN_FEATS to DATASET_feats.pth.

Test

We provide pretrain models in ckpt/pretrained, please run sh scripts/test_kitti.sh or sh scripts/test_nusc.sh, please reminder to specify GPU,DATA_ROOT,SAVE_DIR in the scripts. The test results will be saved in SAVE_DIR.

Citation

If you find this project useful for your work, please consider citing:

@InProceedings{Lu_2021_HRegNet,
        author = {Lu, Fan and Chen, Guang and Liu, Yinlong and Zhang Lijun, Qu Sanqing, Liu Shu, Gu Rongqi},
        title = {HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration},
        booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision},
        year = {2021}
}

Acknowledgments

We want to thank all the ICCV reviewers and the following open-source projects for the help of the implementation:

  • DGR(Point clouds preprocessing and evaluation)
  • PointNet++(unofficial implementation, for Furthest Points Sampling)
Owner
Intelligent Sensing, Perception and Computing Group
Intelligent Sensing, Perception and Computing Group
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 Oral paper PiCO; also see our Project

王皓波 147 Jan 07, 2023
Yolov5-lite - Minimal PyTorch implementation of YOLOv5

Yolov5-Lite: Minimal YOLOv5 + Deep Sort Overview This repo is a shortened versio

Kadir Nar 57 Nov 28, 2022
Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships.

feature-set-comp Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships. Reposito

Trent Henderson 7 May 25, 2022
FairMOT - A simple baseline for one-shot multi-object tracking

FairMOT - A simple baseline for one-shot multi-object tracking

Yifu Zhang 3.6k Jan 08, 2023
Official repository for CVPR21 paper "Deep Stable Learning for Out-Of-Distribution Generalization".

StableNet StableNet is a deep stable learning method for out-of-distribution generalization. This is the official repo for CVPR21 paper "Deep Stable L

120 Dec 28, 2022
sense-py-AnishaBaishya created by GitHub Classroom

Compute Statistics Here we compute statistics for a bunch of numbers. This project uses the unittest framework to test functionality. Pass the tests T

1 Oct 21, 2021
Feature extraction made simple with torchextractor

torchextractor: PyTorch Intermediate Feature Extraction Introduction Too many times some model definitions get remorselessly copy-pasted just because

Antoine Broyelle 89 Oct 31, 2022
Tensors and neural networks in Haskell

Hasktorch Hasktorch is a library for tensors and neural networks in Haskell. It is an independent open source community project which leverages the co

hasktorch 920 Jan 04, 2023
KoCLIP: Korean port of OpenAI CLIP, in Flax

KoCLIP This repository contains code for KoCLIP, a Korean port of OpenAI's CLIP. This project was conducted as part of Hugging Face's Flax/JAX communi

Jake Tae 100 Jan 02, 2023
Experiments with differentiable stacks and queues in PyTorch

Please use stacknn-core instead! StackNN This project implements differentiable stacks and queues in PyTorch. The data structures are implemented in s

Will Merrill 141 Oct 06, 2022
PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM)

Neuro-Symbolic Sudoku Solver PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM). Please n

Ashutosh Hathidara 60 Dec 10, 2022
Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data

VIMuRe Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data. If you use this code please cite this article (preprint). De

6 Dec 15, 2022
Machine Learning Model deployment for Container (TensorFlow Serving)

try_tf_serving ├───dataset │ ├───testing │ │ ├───paper │ │ ├───rock │ │ └───scissors │ └───training │ ├───paper │ ├───rock

Azhar Rizki Zulma 5 Jan 07, 2022
Code I use to automatically update my videos' metadata on YouTube

mCodingYouTube This repository contains the code I use to automatically update my videos' metadata on YouTube, including: titles, descriptions, tags,

James Murphy 19 Oct 07, 2022
Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination

Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination Pratul P. Srinivasan, Ben Mildenhall, Matthew Tancik, Jonathan T. Barron,

Pratul Srinivasan 65 Dec 14, 2022
An index of recommendation algorithms that are based on Graph Neural Networks.

An index of recommendation algorithms that are based on Graph Neural Networks.

FIB LAB, Tsinghua University 564 Jan 07, 2023
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.

Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai

timeseriesAI 2.8k Jan 08, 2023
Repository for benchmarking graph neural networks

Benchmarking Graph Neural Networks Updates Nov 2, 2020 Project based on DGL 0.4.2. See the relevant dependencies defined in the environment yml files

NTU Graph Deep Learning Lab 2k Jan 03, 2023
PyTorch implementations of the paper: "Learning Independent Instance Maps for Crowd Localization"

IIM - Crowd Localization This repo is the official implementation of paper: Learning Independent Instance Maps for Crowd Localization. The code is dev

tao han 91 Nov 10, 2022
FS-Mol: A Few-Shot Learning Dataset of Molecules

FS-Mol is A Few-Shot Learning Dataset of Molecules, containing molecular compounds with measurements of activity against a variety of protein targets. The dataset is presented with a model evaluation

Microsoft 114 Dec 15, 2022