Official repository for CVPR21 paper "Deep Stable Learning for Out-Of-Distribution Generalization".

Overview

StableNet

StableNet is a deep stable learning method for out-of-distribution generalization.

This is the official repo for CVPR21 paper "Deep Stable Learning for Out-Of-Distribution Generalization" and the arXiv version can be found at https://arxiv.org/abs/2104.07876.

Introduction

Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.

Installation

Requirements

  • Linux with Python >= 3.6
  • PyTorch >= 1.1.0
  • torchvision >= 0.3.0
  • tensorboard >= 1.14.0

Quick Start

Train StableNet

python main_stablenet.py --gpu 0

You can see more options from

python main_stablenet.py -h

Result files will be saved in results/.

Performance and trained models

setting dataset source domain target domain network dataset split accuracy trained model
unbalanced(5:1:1) PACS A,C,S photo ResNet18 split file 94.864 model file
unbalanced(5:1:1) PACS C,S,P art_painting ResNet18 split file 80.344 model file
unbalanced(5:1:1) PACS A,S,P cartoon ResNet18 split file 74.249 model file
unbalanced(5:1:1) PACS A,C,P sketch ResNet18 split file 71.046 model file
unbalanced(5:1:1) VLCS L,P,S caltech ResNet18 split file 88.776 model file
unbalanced(5:1:1) VLCS C,P,S labelme ResNet18 split file 63.243 model file
unbalanced(5:1:1) VLCS C,L,S pascal ResNet18 split file 66.383 model file
unbalanced(5:1:1) VLCS C,L,P sun ResNet18 split file 55.459 model file
flexible(5:1:1) PACS - - ResNet18 split file 45.964 model file
flexible(5:1:1) VLCS - - ResNet18 split file 81.157 model file

Citing StableNet

If you find this repo useful for your research, please consider citing the paper.

@inproceedings{zhang2021deep,
  title={Deep Stable Learning for Out-Of-Distribution Generalization},
  author={Zhang, Xingxuan and Cui, Peng and Xu, Renzhe and Zhou, Linjun and He, Yue and Shen, Zheyan},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={5372--5382},
  year={2021}
}
This repository contains the code for the binaural-detection model used in the publication arXiv:2111.04637

This repository contains the code for the binaural-detection model used in the publication arXiv:2111.04637 Dependencies The model depends on the foll

Jรถrg Encke 2 Oct 14, 2022
Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis in JAX

SYMPAIS: Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis Overview | Installation | Documentation | Examples | Notebo

Yicheng Luo 4 Sep 13, 2022
Sparse Physics-based and Interpretable Neural Networks

Sparse Physics-based and Interpretable Neural Networks for PDEs This repository contains the code and manuscript for research done on Sparse Physics-b

28 Jan 03, 2023
Lacmus is a cross-platform application that helps to find people who are lost in the forest using computer vision and neural networks.

lacmus The program for searching through photos from the air of lost people in the forest using Retina Net neural nwtwork. The project is being develo

Lacmus Foundation 168 Dec 27, 2022
project page for VinVL

VinVL: Revisiting Visual Representations in Vision-Language Models Updates 02/28/2021: Project page built. Introduction This repository is the project

308 Jan 09, 2023
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 29 Jan 08, 2023
A pytorch implementation of faster RCNN detection framework (Use detectron2, it's a masterpiece)

Notice(2019.11.2) This repo was built back two years ago when there were no pytorch detection implementation that can achieve reasonable performance.

Ruotian(RT) Luo 1.8k Jan 01, 2023
๐Ÿ“– Deep Attentional Guided Image Filtering

๐Ÿ“– Deep Attentional Guided Image Filtering [Paper] Zhiwei Zhong, Xianming Liu, Junjun Jiang, Debin Zhao ,Xiangyang Ji Harbin Institute of Technology,

9 Dec 23, 2022
A collection of Google research projects related to Federated Learning and Federated Analytics.

Federated Research Federated Research is a collection of research projects related to Federated Learning and Federated Analytics. Federated learning i

Google Research 483 Jan 05, 2023
scikit-learn: machine learning in Python

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license. The project was started

scikit-learn 52.5k Jan 08, 2023
Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer

Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer Paper on arXiv Public PyTorch implementation of two-stage peer-reg

NNAISENSE 38 Oct 14, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
RID-Noise: Towards Robust Inverse Design under Noisy Environments

This is code of RID-Noise. Reproduce RID-Noise Results Toy tasks Please refer to the notebook ridnoise.ipynb to view experiments on three toy tasks. B

Thyrix 2 Nov 23, 2022
Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis

Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis This is a PyTorch implementation of the model described in our pape

qzhb 6 Jul 08, 2021
This is the code used in the paper "Entity Embeddings of Categorical Variables".

This is the code used in the paper "Entity Embeddings of Categorical Variables". If you want to get the original version of the code used for the Kagg

Cheng Guo 845 Nov 29, 2022
Image Captioning using CNN and Transformers

Image-Captioning Keras/Tensorflow Image Captioning application using CNN and Transformer as encoder/decoder. In particulary, the architecture consists

24 Dec 28, 2022
This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEECH" submitted to ICASSP 2022

CPC_DeepCluster This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEEC

LEAP Lab 2 Sep 15, 2022
Baseline inference Algorithm for the STOIC2021 challenge.

STOIC2021 Baseline Algorithm This codebase contains an example submission for the STOIC2021 COVID-19 AI Challenge. As a baseline algorithm, it impleme

Luuk Boulogne 10 Aug 08, 2022
The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track.

ISC21-Descriptor-Track-1st The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track. You can check our solution

lyakaap 75 Jan 08, 2023
Reimplementation of Learning Mesh-based Simulation With Graph Networks

Pytorch Implementation of Learning Mesh-based Simulation With Graph Networks This is the unofficial implementation of the approach described in the pa

Jingwei Xu 33 Dec 14, 2022