StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation
This repository contains the official PyTorch implementation of the following paper:
StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation
Wonjong Jang, Gwangjin Ju, Yucheol Jung, Jiaolong Yang, Xin Tong, Seungyong Lee, SIGGRAPH 2021
Requirements
- PyTorch 1.3.1
- torchvision 0.4.2
- CUDA 10.1/10.2
- dlib 19.22.0
- requests 2.23.0
- tqdm 4.46.2
If you are using Anaconda environment and get errors regarding compiler version mismatch, check issue #1.
Usage
First download pre-trained model weights:
bash ./download.sh
Train
python -m torch.distributed.launch --nproc_per_node=N_GPU train.py --name EXPERIMENT_NAME --freeze_D
Test
Test on user's input images:
python test.py --ckpt CHECKPOINT_PATH --input_dir INPUT_IMAGE_PATH --output_dir OUTPUT_CARICATURE_PATH --invert_images
We provide some sample images. Test on sample images:
python test.py --ckpt CHECKPOINT_PATH --input_dir examples/samples --output_dir examples/results --invert_images
It inverts latent codes from input photos and generates caricatures from latent codes.
Input image | Output caricature |
---|---|
Citation
If you find this code useful, please consider citing:
@article{Jang2021StyleCari,
author = {Wonjong Jang and Gwangjin Ju and Yucheol Jung and Jiaolong Yang and Xin Tong and Seungyong Lee},
title = {StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation},
booktitle = {ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH)},
publisher = {ACM},
volume = {40},
number = {4},
year = {2021}
}
Contact
You can have contact with [email protected] or [email protected]
License
This software is being made available under the terms in the LICENSE file.
Any exemptions to these terms requrie a licens from the Pohang University of Science and Technology.