Physics-informed Neural Operator for Learning Partial Differential Equation

Related tags

Deep LearningPINO
Overview

PINO

PINO Diagram

Results on Navier Stokes equation

Physics-informed Neural Operator for Learning Partial Differential Equation

Abstract: Machine learning methods have recently shown promise in solving partial differential equations (PDEs). They can be classified into two broad categories: solution function approximation and operator learning. The Physics-Informed Neural Network (PINN) is an example of the former while the Fourier neural operator (FNO) is an example of the latter. Both these approaches have shortcomings. The optimization in PINN is challenging and prone to failure, especially on multi-scale dynamic systems. FNO does not suffer from this optimization issue since it carries out supervised learning on a given dataset, but obtaining such data may be too expensive or infeasible. In this work, we propose the physics-informed neural operator (PINO), where we combine the operating-learning and function-optimization frameworks, and this improves convergence rates and accuracy over both PINN and FNO models. In the operator-learning phase, PINO learns the solution operator over multiple instances of the parametric PDE family. In the test-time optimization phase, PINO optimizes the pre-trained operator ansatz for the querying instance of the PDE. Experiments show PINO outperforms previous ML methods on many popular PDE families while retaining the extraordinary speed-up of FNO compared to solvers. In particular, PINO accurately solves long temporal transient flows and Kolmogorov flows, while PINN and other methods fail to converge.

Requirements

  • Pytorch 1.8.0 or later
  • wandb
  • tqdm
  • scipy
  • h5py
  • numpy
  • DeepXDE:latest
  • tensorflow 2.4.0

Data description

Burgers equation

burgers_pino.mat

Darcy flow

  • spatial domain: $x\in (0,1)^2$
  • Data file: piececonst_r421_N1024_smooth1.mat, piececonst_r421_N1024_smooth2.mat
  • Raw data shape: 1024x421x421

Long roll out of Navier Stokes equation

  • spatial domain: $x\in (0, 1)^2$
  • temporal domain: $t\in [0, 49]$
  • forcing: $0.1(\sin(2\pi(x_1+x_2)) + \cos(2\pi(x_1+x_2)))$
  • viscosity = 0.001

Data file: nv_V1e-3_N5000_T50.mat, with shape 50 x 64 x 64 x 5000

  • train set: -1-4799
  • test set: 4799-4999

Navier Stokes with Reynolds number 500

  • spatial domain: $x\in (0, 2\pi)^2$
  • temporal domain: $t \in [0, 0.5]$
  • forcing: $-4\cos(4x_2)$
  • Reynolds number: 500

Train set: data of shape (N, T, X, Y) where N is the number of instances, T is temporal resolution, X, Y are spatial resolutions.

  1. NS_fft_Re500_T4000.npy : 4000x64x64x65
  2. NS_fine_Re500_T128_part0.npy: 100x129x128x128
  3. NS_fine_Re500_T128_part1.npy: 100x129x128x128

Test set: data of shape (N, T, X, Y) where N is the number of instances, T is temporal resolution, X, Y are spatial resolutions.

  1. NS_Re500_s256_T100_test.npy: 100x129x256x256
  2. NS_fine_Re500_T128_part2.npy: 100x129x128x128

Configuration file format: see .yaml files under folder configs for detail.

Code for Burgers equation

Train PINO

To run PINO for Burgers equation, use, e.g.,

python3 train_burgers.py --config_path configs/pretrain/burgers-pretrain.yaml --mode train

To test PINO for burgers equation, use, e.g.,

python3 train_burgers.py --config_path configs/test/burgers.yaml --mode test

Code for Darcy Flow

Operator learning

To run PINO for Darcy Flow, use, e.g.,

python3 train_operator.py --config_path configs/pretrain/Darcy-pretrain.yaml

To evaluate operator for Darcy Flow, use, e.g.,

python3 eval_operator.py --config_path configs/test/darcy.yaml

Test-time optimization

To do test-time optimization for Darcy Flow, use, e.g.,

python3 run_pino2d.py --config_path configs/finetune/Darcy-finetune.yaml --start [starting index] --stop [stopping index]

Baseline

To run DeepONet, use, e.g.,

python3 deeponet.py --config_path configs/pretrain/Darcy-pretrain-deeponet.yaml --mode train 

To test DeepONet, use, e.g.,

python3 deeponet.py --config_path configs/test/darcy.yaml --mode test

Code for Navier Stokes equation

Train PINO for short time period

To run operator learning, use, e.g.,

python3 train_operator.py --config_path configs/pretrain/Re500-pretrain-05s-4C0.yaml

To evaluate trained operator, use

python3 eval_operator.py --config_path configs/test/Re500-05s.yaml

To run test-time optimization, use

python3 train_PINO3d.py --config_path configs/***.yaml 

To train Navier Stokes equations sequentially without running train_PINO3d.py multiple times, use

python3 run_pino3d.py --config_path configs/[configuration file name].yaml --start [index of the first data] --stop [which data to stop]

Baseline for short time period

To train DeepONet, use

python3 deeponet.py --config_path configs/[configuration file].yaml --mode train

To test DeepONet, use

python3 deeponet.py --config_path configs/[configuration file].yaml --mode test

To train and test PINNs, use, e.g.,

python3 nsfnet.py --config_path configs/Re500-pinns-05s.yaml --start [starting index] --stop [stopping index]

Baseline for long roll out

To train and test PINNs, use

python3 nsfnet.py --config_path configs/scratch/NS-50s.yaml --long --start [starting index] --stop [stopping index]

Pseudospectral solver for Navier Stokes equation

To run solver, use

python3 run_solver.py --config_path configs/Re500-0.5s.yaml
Equivariant GNN for the prediction of atomic multipoles up to quadrupoles.

Equivariant Graph Neural Network for Atomic Multipoles Description Repository for the Model used in the publication 'Learning Atomic Multipoles: Predi

16 Nov 22, 2022
Static-test - A playground to play with ideas related to testing the comparability of the code

Static test playground ⚠️ The code is just an experiment. Compiles and runs on U

Igor Bogoslavskyi 4 Feb 18, 2022
GND-Nets (Graph Neural Diffusion Networks) in TensorFlow.

GNDC For submission to IEEE TKDE. Overview Here we provide the implementation of GND-Nets (Graph Neural Diffusion Networks) in TensorFlow. The reposit

Wei Ye 3 Aug 08, 2022
PyTorch Implementation of our paper Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation

PyTorch Implementation of our paper Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation

Zechen Bai 12 Jul 08, 2022
'Aligned mixture of latent dynamical systems' (amLDS) for stimulus decoding probabilistic manifold alignment across animals. P. Herrero-Vidal et al. NeurIPS 2021 code.

Across-animal odor decoding by probabilistic manifold alignment (NeurIPS 2021) This repository is the official implementation of aligned mixture of la

Pedro Herrero-Vidal 3 Jul 12, 2022
particle tracking model, works with the ROMS output file(qck.nc, his.nc)

particle-tracking-model-for-ROMS particle tracking model, works with the ROMS output file(qck.nc, his.nc) description this is a 2-dimensional particle

xusheng 1 Jan 11, 2022
Simple Python application to transform Serial data into OSC messages

SerialToOSC-Bridge Simple Python application to transform Serial data into OSC messages. The current purpose is to be a compatibility layer between ha

Division of Applied Acoustics at Chalmers University of Technology 3 Jun 03, 2021
A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset.

A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset. This repo contains scripts to train RL agents to navigate the closed world and collect vi

MUGEN 11 Oct 22, 2022
SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

Wentao Zhu 24 May 20, 2022
Zeyuan Chen, Yangchao Wang, Yang Yang and Dong Liu.

Principled S2R Dehazing This repository contains the official implementation for PSD Framework introduced in the following paper: PSD: Principled Synt

zychen 78 Dec 30, 2022
(to be released) [NeurIPS'21] Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs

Higher-Order Transformers Kim J, Oh S, Hong S, Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs, NeurIPS 2021. [arxiv] W

Jinwoo Kim 44 Dec 28, 2022
All materials of Cassandra Event, Udyam'22

Cassandra 2022 Workspace Workshop Materials Workshop-1 Workshop-2 Workshop-3 Workshop-4 Assignments Assignment-1 Assignment-2 Assignment-3 Resources P

36 Dec 31, 2022
This project aims to be a handler for input creation and running of multiple RICEWQ simulations.

What is autoRICEWQ? This project aims to be a handler for input creation and running of multiple RICEWQ simulations. What is RICEWQ? From the descript

Yass Fuentes 1 Feb 01, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Libo Qin 25 Sep 06, 2022
Python Actor concurrency library

Thespian Actor Library This library provides the framework of an Actor model for use by applications implementing Actors. Thespian Site with Documenta

Kevin Quick 177 Dec 11, 2022
This repository contains the code used to quantitatively evaluate counterfactual examples in the associated paper.

On Quantitative Evaluations of Counterfactuals Install To install required packages with conda, run the following command: conda env create -f requi

Frederik Hvilshøj 1 Jan 16, 2022
Models, datasets and tools for Facial keypoints detection

Template for Data Science Project This repo aims to give a robust starting point to any Data Science related project. It contains readymade tools setu

girafe.ai 1 Feb 11, 2022
git《Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction》(ECCV 2020) GitHub:

Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction Code for the ECCV 2020 paper by Yiming Qian and Yasutaka Furukawa Getting

37 Dec 04, 2022
CSD: Consistency-based Semi-supervised learning for object Detection

CSD: Consistency-based Semi-supervised learning for object Detection (NeurIPS 2019) By Jisoo Jeong, Seungeui Lee, Jee-soo Kim, Nojun Kwak Installation

80 Dec 15, 2022
This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.

OpenVINO Inference API This is a repository for an object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operati

BMW TechOffice MUNICH 68 Nov 24, 2022