Physics-informed Neural Operator for Learning Partial Differential Equation

Related tags

Deep LearningPINO
Overview

PINO

PINO Diagram

Results on Navier Stokes equation

Physics-informed Neural Operator for Learning Partial Differential Equation

Abstract: Machine learning methods have recently shown promise in solving partial differential equations (PDEs). They can be classified into two broad categories: solution function approximation and operator learning. The Physics-Informed Neural Network (PINN) is an example of the former while the Fourier neural operator (FNO) is an example of the latter. Both these approaches have shortcomings. The optimization in PINN is challenging and prone to failure, especially on multi-scale dynamic systems. FNO does not suffer from this optimization issue since it carries out supervised learning on a given dataset, but obtaining such data may be too expensive or infeasible. In this work, we propose the physics-informed neural operator (PINO), where we combine the operating-learning and function-optimization frameworks, and this improves convergence rates and accuracy over both PINN and FNO models. In the operator-learning phase, PINO learns the solution operator over multiple instances of the parametric PDE family. In the test-time optimization phase, PINO optimizes the pre-trained operator ansatz for the querying instance of the PDE. Experiments show PINO outperforms previous ML methods on many popular PDE families while retaining the extraordinary speed-up of FNO compared to solvers. In particular, PINO accurately solves long temporal transient flows and Kolmogorov flows, while PINN and other methods fail to converge.

Requirements

  • Pytorch 1.8.0 or later
  • wandb
  • tqdm
  • scipy
  • h5py
  • numpy
  • DeepXDE:latest
  • tensorflow 2.4.0

Data description

Burgers equation

burgers_pino.mat

Darcy flow

  • spatial domain: $x\in (0,1)^2$
  • Data file: piececonst_r421_N1024_smooth1.mat, piececonst_r421_N1024_smooth2.mat
  • Raw data shape: 1024x421x421

Long roll out of Navier Stokes equation

  • spatial domain: $x\in (0, 1)^2$
  • temporal domain: $t\in [0, 49]$
  • forcing: $0.1(\sin(2\pi(x_1+x_2)) + \cos(2\pi(x_1+x_2)))$
  • viscosity = 0.001

Data file: nv_V1e-3_N5000_T50.mat, with shape 50 x 64 x 64 x 5000

  • train set: -1-4799
  • test set: 4799-4999

Navier Stokes with Reynolds number 500

  • spatial domain: $x\in (0, 2\pi)^2$
  • temporal domain: $t \in [0, 0.5]$
  • forcing: $-4\cos(4x_2)$
  • Reynolds number: 500

Train set: data of shape (N, T, X, Y) where N is the number of instances, T is temporal resolution, X, Y are spatial resolutions.

  1. NS_fft_Re500_T4000.npy : 4000x64x64x65
  2. NS_fine_Re500_T128_part0.npy: 100x129x128x128
  3. NS_fine_Re500_T128_part1.npy: 100x129x128x128

Test set: data of shape (N, T, X, Y) where N is the number of instances, T is temporal resolution, X, Y are spatial resolutions.

  1. NS_Re500_s256_T100_test.npy: 100x129x256x256
  2. NS_fine_Re500_T128_part2.npy: 100x129x128x128

Configuration file format: see .yaml files under folder configs for detail.

Code for Burgers equation

Train PINO

To run PINO for Burgers equation, use, e.g.,

python3 train_burgers.py --config_path configs/pretrain/burgers-pretrain.yaml --mode train

To test PINO for burgers equation, use, e.g.,

python3 train_burgers.py --config_path configs/test/burgers.yaml --mode test

Code for Darcy Flow

Operator learning

To run PINO for Darcy Flow, use, e.g.,

python3 train_operator.py --config_path configs/pretrain/Darcy-pretrain.yaml

To evaluate operator for Darcy Flow, use, e.g.,

python3 eval_operator.py --config_path configs/test/darcy.yaml

Test-time optimization

To do test-time optimization for Darcy Flow, use, e.g.,

python3 run_pino2d.py --config_path configs/finetune/Darcy-finetune.yaml --start [starting index] --stop [stopping index]

Baseline

To run DeepONet, use, e.g.,

python3 deeponet.py --config_path configs/pretrain/Darcy-pretrain-deeponet.yaml --mode train 

To test DeepONet, use, e.g.,

python3 deeponet.py --config_path configs/test/darcy.yaml --mode test

Code for Navier Stokes equation

Train PINO for short time period

To run operator learning, use, e.g.,

python3 train_operator.py --config_path configs/pretrain/Re500-pretrain-05s-4C0.yaml

To evaluate trained operator, use

python3 eval_operator.py --config_path configs/test/Re500-05s.yaml

To run test-time optimization, use

python3 train_PINO3d.py --config_path configs/***.yaml 

To train Navier Stokes equations sequentially without running train_PINO3d.py multiple times, use

python3 run_pino3d.py --config_path configs/[configuration file name].yaml --start [index of the first data] --stop [which data to stop]

Baseline for short time period

To train DeepONet, use

python3 deeponet.py --config_path configs/[configuration file].yaml --mode train

To test DeepONet, use

python3 deeponet.py --config_path configs/[configuration file].yaml --mode test

To train and test PINNs, use, e.g.,

python3 nsfnet.py --config_path configs/Re500-pinns-05s.yaml --start [starting index] --stop [stopping index]

Baseline for long roll out

To train and test PINNs, use

python3 nsfnet.py --config_path configs/scratch/NS-50s.yaml --long --start [starting index] --stop [stopping index]

Pseudospectral solver for Navier Stokes equation

To run solver, use

python3 run_solver.py --config_path configs/Re500-0.5s.yaml
Attention over nodes in Graph Neural Networks using PyTorch (NeurIPS 2019)

Intro This repository contains code to generate data and reproduce experiments from our NeurIPS 2019 paper: Boris Knyazev, Graham W. Taylor, Mohamed R

Boris Knyazev 242 Jan 06, 2023
Code for all the Advent of Code'21 challenges mostly written in python

Advent of Code 21 Code for all the Advent of Code'21 challenges mostly written in python. They are not necessarily the best or fastest solutions but j

4 May 26, 2022
Fast, general, and tested differentiable structured prediction in PyTorch

Fast, general, and tested differentiable structured prediction in PyTorch

HNLP 1.1k Dec 16, 2022
A paper using optimal transport to solve the graph matching problem.

GOAT A paper using optimal transport to solve the graph matching problem. https://arxiv.org/abs/2111.05366 Repo structure .github: Files specifying ho

neurodata 8 Jan 04, 2023
TSIT: A Simple and Versatile Framework for Image-to-Image Translation

TSIT: A Simple and Versatile Framework for Image-to-Image Translation This repository provides the official PyTorch implementation for the following p

Liming Jiang 255 Nov 23, 2022
Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation

UniFuse (RAL+ICRA2021) Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation, arXiv, Demo Preparation I

Alibaba 47 Dec 26, 2022
Constraint-based geometry sketcher for blender

Constraint-based sketcher addon for Blender that allows to create precise 2d shapes by defining a set of geometric constraints like tangent, distance,

1.7k Dec 31, 2022
Gradient Inversion with Generative Image Prior

Gradient Inversion with Generative Image Prior This repository is an implementation of "Gradient Inversion with Generative Image Prior", accepted to N

MLLab @ Postech 25 Jan 09, 2023
StyleGAN2 - Official TensorFlow Implementation

StyleGAN2 - Official TensorFlow Implementation

NVIDIA Research Projects 10.1k Dec 28, 2022
A list of all papers and resoureces on Semantic Segmentation

Semantic-Segmentation A list of all papers and resoureces on Semantic Segmentation. Dataset importance SemanticSegmentation_DL Some implementation of

Alan Tang 1.1k Dec 12, 2022
A highly efficient, fast, powerful and light-weight anime downloader and streamer for your favorite anime.

AnimDL - Download & Stream Your Favorite Anime AnimDL is an incredibly powerful tool for downloading and streaming anime. Core features Abuses the dev

KR 759 Jan 08, 2023
SMCA replication There are no extra compiled components in SMCA DETR and package dependencies are minimal

Usage There are no extra compiled components in SMCA DETR and package dependencies are minimal, so the code is very simple to use. We provide instruct

22 May 06, 2022
Official implementation of "Learning Proposals for Practical Energy-Based Regression", 2021.

ebms_proposals Official implementation (PyTorch) of the paper: Learning Proposals for Practical Energy-Based Regression, 2021 [arXiv] [project]. Fredr

Fredrik Gustafsson 10 Oct 22, 2022
Using CNN to mimic the driver based on training data from Torcs

Behavioural-Cloning-in-autonomous-driving Using CNN to mimic the driver based on training data from Torcs. Approach First, the data was collected from

Sudharshan 2 Jan 05, 2022
Unofficial & improved implementation of NeRF--: Neural Radiance Fields Without Known Camera Parameters

[Unofficial code-base] NeRF--: Neural Radiance Fields Without Known Camera Parameters [ Project | Paper | Official code base ] ⬅️ Thanks the original

Jianfei Guo 239 Dec 22, 2022
7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle

kaggle-hpa-2021-7th-place-solution Code for 7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle. A description of the met

8 Jul 09, 2021
iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis

iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis Andreas Bl

CompVis Heidelberg 36 Dec 25, 2022
It's a implement of this paper:Relation extraction via Multi-Level attention CNNs

Relation Classification via Multi-Level Attention CNNs It's a implement of this paper:Relation Classification via Multi-Level Attention CNNs. Training

Aybss 2 Nov 04, 2022
In the AI for TSP competition we try to solve optimization problems using machine learning.

AI for TSP Competition Goal In the AI for TSP competition we try to solve optimization problems using machine learning. The competition will be hosted

Paulo da Costa 11 Nov 27, 2022
Keras-1D-NN-Classifier

Keras-1D-NN-Classifier This code is based on the reference codes linked below. reference 1, reference 2 This code is for 1-D array data classification

Jae-Hoon Shim 6 May 18, 2021