Attention over nodes in Graph Neural Networks using PyTorch (NeurIPS 2019)

Overview

Intro

This repository contains code to generate data and reproduce experiments from our NeurIPS 2019 paper:

Boris Knyazev, Graham W. Taylor, Mohamed R. Amer. Understanding Attention and Generalization in Graph Neural Networks.

See slides here.

An earlier short version of our paper was presented as a contributed talk at ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Update:

In the code for MNIST, the dist variable should have been squared to make it a Gaussian. All figures and results were generated without squaring it. I don't think it's very important in terms of results, but if you square it, sigma should be adjusted accordingly.

MNIST TRIANGLES

For MNIST from top to bottom rows:

  • input test images with additive Gaussian noise with standard deviation in the range from 0 to 1.4 with step 0.2
  • attention coefficients (alpha) predicted by the unsupervised model
  • attention coefficients (alpha) predicted by the supervised model
  • attention coefficients (alpha) predicted by our weakly-supervised model

For TRIANGLES from top to bottom rows:

  • on the left: input test graph (with 4-100 nodes) with ground truth attention coefficients, on the right: graph obtained by ground truth node pooling
  • on the left: input test graph (with 4-100 nodes) with unsupervised attention coefficients, on the right: graph obtained by unsupervised node pooling
  • on the left: input test graph (with 4-100 nodes) with supervised attention coefficients, on the right: graph obtained by supervised node pooling
  • on the left: input test graph (with 4-100 nodes) with weakly-supervised attention coefficients, on the right: graph obtained by weakly-supervised node pooling

Note that during training, our MNIST models have not encountered noisy images and our TRIANGLES models have not encountered graphs larger than with N=25 nodes.

Examples using PyTorch Geometric

COLORS and TRIANGLES datasets are now also available in the TU format, so that you can use a general TU datareader. See PyTorch Geometric examples for COLORS and TRIANGLES.

Example of evaluating a pretrained model on MNIST

For more examples, see MNIST_eval_models and TRIANGLES_eval_models.

# Download model checkpoint or 'git clone' this repo
import urllib.request
# Let's use the model with supervised attention (other models can be found in the Table below)
model_name = 'checkpoint_mnist-75sp_139255_epoch30_seed0000111.pth.tar'
model_url = 'https://github.com/bknyaz/graph_attention_pool/raw/master/checkpoints/%s' % model_name
model_path = 'checkpoints/%s' % model_name
urllib.request.urlretrieve(model_url, model_path)
# Load the model
import torch
from chebygin import ChebyGIN

state = torch.load(model_path)
args = state['args']
model = ChebyGIN(in_features=5, out_features=10, filters=args.filters, K=args.filter_scale,
                 n_hidden=args.n_hidden, aggregation=args.aggregation, dropout=args.dropout,
                 readout=args.readout, pool=args.pool, pool_arch=args.pool_arch)
model.load_state_dict(state['state_dict'])
model = model.eval()
# Load image using standard PyTorch Dataset
from torchvision import datasets
data = datasets.MNIST('./data', train=False, download=True)
images = (data.test_data.numpy() / 255.)
import numpy as np
img = images[0].astype(np.float32)  # 28x28 MNIST image
# Extract superpixels and create node features
import scipy.ndimage
from skimage.segmentation import slic
from scipy.spatial.distance import cdist

# The number (n_segments) of superpixels returned by SLIC is usually smaller than requested, so we request more
superpixels = slic(img, n_segments=95, compactness=0.25, multichannel=False)
sp_indices = np.unique(superpixels)
n_sp = len(sp_indices)  # should be 74 with these parameters of slic

sp_intensity = np.zeros((n_sp, 1), np.float32)
sp_coord = np.zeros((n_sp, 2), np.float32)  # row, col
for seg in sp_indices:
    mask = superpixels == seg
    sp_intensity[seg] = np.mean(img[mask])
    sp_coord[seg] = np.array(scipy.ndimage.measurements.center_of_mass(mask))

# The model is invariant to the order of nodes in a graph
# We can shuffle nodes and obtain exactly the same results
ind = np.random.permutation(n_sp)
sp_coord = sp_coord[ind]
sp_intensity = sp_intensity[ind]
# Create edges between nodes in the form of adjacency matrix
sp_coord = sp_coord / images.shape[1]
dist = cdist(sp_coord, sp_coord)  # distance between all pairs of nodes
sigma = 0.1 * np.pi  # width of a Guassian
A = np.exp(- dist / sigma ** 2)  # transform distance to spatial closeness
A[np.diag_indices_from(A)] = 0  # remove self-loops
A = torch.from_numpy(A).float().unsqueeze(0)
# Prepare an input to the model and process it
N_nodes = sp_intensity.shape[0]
mask = torch.ones(1, N_nodes, dtype=torch.uint8)

# mean and std computed for superpixel features in the training set
mn = torch.tensor([0.11225057, 0.11225057, 0.11225057, 0.44206527, 0.43950436]).view(1, 1, -1)
sd = torch.tensor([0.2721889,  0.2721889,  0.2721889,  0.2987583,  0.30080357]).view(1, 1, -1)

node_features = (torch.from_numpy(np.pad(np.concatenate((sp_intensity, sp_coord), axis=1),
                                         ((0, 0), (2, 0)), 'edge')).unsqueeze(0) - mn) / sd    

y, other_outputs = model([node_features, A, mask, None, {'N_nodes': torch.zeros(1, 1) + N_nodes}])
alpha = other_outputs['alpha'][0].data
  • y is a vector with 10 unnormalized class scores. To get a predicted label, we can use torch.argmax(y).

  • alpha is a vector of attention coefficients alpha for each node.

Tasks & Datasets

  1. We design two synthetic graph tasks, COLORS and TRIANGLES, in which we predict the number of green nodes and the number of triangles respectively.

  2. We also experiment with the MNIST image classification dataset, which we preprocess by extracting superpixels - a more natural way to feed images to a graph. We denote this dataset as MNIST-75sp.

  3. We validate our weakly-supervised approach on three common graph classification benchmarks: COLLAB, PROTEINS and D&D.

For COLORS, TRIANGLES and MNIST we know ground truth attention for nodes, which allows us to study graph neural networks with attention in depth.

Data generation

To generate all data using a single command: ./scripts/prepare_data.sh.

All generated/downloaded ata will be stored in the local ./data directory. It can take about 1 hour to prepare all data (see my log) and all data take about 2 GB.

Alternatively, you can generate data for each task as described below.

In case of any issues with running these scripts, data can be downloaded from here.

COLORS

To generate training, validation and test data for our Colors dataset with different dimensionalities:

for dim in 3 8 16 32; do python generate_data.py --dim $dim; done

MNIST-75sp

To generate training and test data for our MNIST-75sp dataset using 4 CPU threads:

for split in train test; do python extract_superpixels.py -s $split -t 4; done

Data visualization

Once datasets are generated or downloaded, you can use the following IPython notebooks to load and visualize data:

COLORS and TRIANGLES, MNIST and COLLAB, PROTEINS and D&D.

Pretrained ChebyGIN models

Generalization results on the test sets for three tasks. Other results are available in the paper.

Click on the result to download a trained model in the PyTorch format.

Model COLORS-Test-LargeC TRIANGLES-Test-Large MNIST-75sp-Test-Noisy
Script to train models colors.sh triangles.sh mnist_75sp.sh
Global pooling 15 ± 7 30 ± 1 80 ± 12
Unsupervised attention 11 ± 6 26 ± 2 80 ± 23
Supervised attention 75 ± 17 48 ± 1 92.3 ± 0.4
Weakly-supervised attention 73 ± 14 30 ± 1 88.8 ± 4

The scripts to train the models must be run from the main directory, e.g.: ./scripts/mnist_75sp.sh

Examples of evaluating our trained models can be found in notebooks: MNIST_eval_models and TRIANGLES_eval_models.

Other examples of training models

To tune hyperparameters on the validation set for COLORS, TRIANGLES and MNIST, use the --validation flag.

For COLLAB, PROTEINS and D&D tuning of hyperparameters is included in the training script. Use the --ax flag.

Example of running 10 weakly-supervised experiments on PROTEINS with cross-validation of hyperparameters including initialization parameters (distribution and scale) of the attention model (the --tune_init flag):

for i in $(seq 1 1 10); do dataseed=$(( ( RANDOM % 10000 ) + 1 )); for j in $(seq 1 1 10); do seed=$(( ( RANDOM % 10000 ) + 1 )); python main.py --seed $seed -D TU --n_nodes 25 --epochs 50 --lr_decay_step 25,35,45 --test_batch_size 100 -f 64,64,64 -K 1 --readout max --dropout 0.1 --pool attn_sup_threshold_skip_skip_0 --pool_arch fc_prev --results None --data_dir ./data/PROTEINS --seed_data $dataseed --cv --cv_folds 5 --cv_threads 5 --ax --ax_trials 30 --scale None --tune_init | tee logs/proteins_wsup_"$dataseed"_"$seed".log; done; done

No initialization tuning on COLLAB:

for i in $(seq 1 1 10); do dataseed=$(( ( RANDOM % 10000 ) + 1 )); for j in $(seq 1 1 10); do seed=$(( ( RANDOM % 10000 ) + 1 )); python main.py --seed $seed -D TU --n_nodes 35 --epochs 50 --lr_decay_step 25,35,45 --test_batch_size 32 -f 64,64,64 -K 3 --readout max --dropout 0.1 --pool attn_sup_threshold_skip_skip_skip_0 --pool_arch fc_prev --results None --data_dir ./data/COLLAB --seed_data $dataseed --cv --cv_folds 5 --cv_threads 5 --ax --ax_trials 30 --scale None | tee logs/collab_wsup_"$dataseed"_"$seed".log; done; done

Note that results can be better if using --pool_arch gnn_prev, but we didn't focus on that.

Requirements

Python packages required (can be installed via pip or conda):

  • python >= 3.6.1
  • PyTorch >= 0.4.1
  • Ax for hyper-parameter tuning on COLLAB, PROTEINS and D&D
  • networkx
  • OpenCV
  • SciPy
  • scikit-image
  • scikit-learn

Reference

Please cite our paper if you use our data or code:

@inproceedings{knyazev2019understanding,
  title={Understanding attention and generalization in graph neural networks},
  author={Knyazev, Boris and Taylor, Graham W and Amer, Mohamed},
  booktitle={Advances in Neural Information Processing Systems},
  pages={4202--4212},
  year={2019},
  pdf={http://arxiv.org/abs/1905.02850}
}
Definition of a business problem according to Wilson Lower Bound Score and Time Based Average Rating

Wilson Lower Bound Score, Time Based Rating Average In this study I tried to calculate the product rating and sorting reviews more accurately. I have

3 Sep 30, 2021
[ECCV 2020] Gradient-Induced Co-Saliency Detection

Gradient-Induced Co-Saliency Detection Zhao Zhang*, Wenda Jin*, Jun Xu, Ming-Ming Cheng ⭐ Project Home » The official repo of the ECCV 2020 paper Grad

Zhao Zhang 35 Nov 25, 2022
Code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms.

RDC-SLAM This repository contains code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms. The system takes in

40 Nov 19, 2022
Code for Paper "Evidential Softmax for Sparse MultimodalDistributions in Deep Generative Models"

Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models Abstract Many applications of generative models rely on the marginali

Stanford Intelligent Systems Laboratory 9 Jun 06, 2022
Tilted Empirical Risk Minimization (ICLR '21)

Tilted Empirical Risk Minimization This repository contains the implementation for the paper Tilted Empirical Risk Minimization ICLR 2021 Empirical ri

Tian Li 40 Nov 28, 2022
Development of IP code based on VIPs and AADM

Sparse Implicit Processes In this repository we include the two different versions of the SIP code developed for the article Sparse Implicit Processes

1 Aug 22, 2022
ImageNet-CoG is a benchmark for concept generalization. It provides a full evaluation framework for pre-trained visual representations which measure how well they generalize to unseen concepts.

The ImageNet-CoG Benchmark Project Website Paper (arXiv) Code repository for the ImageNet-CoG Benchmark introduced in the paper "Concept Generalizatio

NAVER 23 Oct 09, 2022
No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency

This repository contains the implementation for the paper: No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consiste

Alireza Golestaneh 75 Dec 30, 2022
This repository is for DSA and CP scripts for reference.

dsa-script-collections This Repo is the collection of DSA and CP scripts for reference. Contents Python Bubble Sort Insertion Sort Merge Sort Quick So

Aditya Kumar Pandey 9 Nov 22, 2022
Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

258 Dec 29, 2022
MediaPipeのPythonパッケージのサンプルです。2020/12/11時点でPython実装のある4機能(Hands、Pose、Face Mesh、Holistic)について用意しています。

mediapipe-python-sample MediaPipeのPythonパッケージのサンプルです。 2020/12/11時点でPython実装のある以下4機能について用意しています。 Hands Pose Face Mesh Holistic Requirement mediapipe 0.

KazuhitoTakahashi 217 Dec 12, 2022
Probabilistic Tensor Decomposition of Neural Population Spiking Activity

Probabilistic Tensor Decomposition of Neural Population Spiking Activity Matlab (recommended) and Python (in developement) implementations of Soulat e

Hugo Soulat 6 Nov 30, 2022
MoViNets PyTorch implementation: Mobile Video Networks for Efficient Video Recognition;

MoViNet-pytorch Pytorch unofficial implementation of MoViNets: Mobile Video Networks for Efficient Video Recognition. Authors: Dan Kondratyuk, Liangzh

189 Dec 20, 2022
Implementation of the GVP-Transformer, which was used in the paper "Learning inverse folding from millions of predicted structures" for de novo protein design alongside Alphafold2

GVP Transformer (wip) Implementation of the GVP-Transformer, which was used in the paper Learning inverse folding from millions of predicted structure

Phil Wang 19 May 06, 2022
MLP-Like Vision Permutator for Visual Recognition (PyTorch)

Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition (arxiv) This is a Pytorch implementation of our paper. We present Vision

Qibin (Andrew) Hou 162 Nov 28, 2022
ACV is a python library that provides explanations for any machine learning model or data.

ACV is a python library that provides explanations for any machine learning model or data. It gives local rule-based explanations for any model or data and different Shapley Values for tree-based mod

Salim Amoukou 85 Dec 27, 2022
Equivariant layers for RC-complement symmetry in DNA sequence data

Equi-RC Equivariant layers for RC-complement symmetry in DNA sequence data This is a repository that implements the layers as described in "Reverse-Co

7 May 19, 2022
Official code implementation for "Personalized Federated Learning using Hypernetworks"

Personalized Federated Learning using Hypernetworks This is an official implementation of Personalized Federated Learning using Hypernetworks paper. [

Aviv Shamsian 121 Dec 25, 2022
EMNLP'2021: SimCSE: Simple Contrastive Learning of Sentence Embeddings

SimCSE: Simple Contrastive Learning of Sentence Embeddings This repository contains the code and pre-trained models for our paper SimCSE: Simple Contr

Princeton Natural Language Processing 2.5k Dec 29, 2022
Implementation of paper: "Image Super-Resolution Using Dense Skip Connections" in PyTorch

SRDenseNet-pytorch Implementation of paper: "Image Super-Resolution Using Dense Skip Connections" in PyTorch (http://openaccess.thecvf.com/content_ICC

wxy 114 Nov 26, 2022