A python package for generating, analyzing and visualizing building shadows

Overview

pybdshadow

1649074615552.png

Documentation Status Downloads codecov Tests Binder

Introduction

pybdshadow is a python package for generating, analyzing and visualizing building shadows from large scale building geographic data. pybdshadow support generate building shadows from both sun light and point light. pybdshadow provides an efficient and easy-to-use method to generate a new source of geospatial data with great application potential in urban study.

The latest stable release of the software can be installed via pip and full documentation can be found here.

Functionality

Currently, pybdshadow mainly provides the following methods:

  • Generating building shadow from sun light: With given location and time, the function in pybdshadow uses the properties of sun position obtained from suncalc-py and the building height to generate shadow geometry data.
  • Generating building shadow from point light: pybdshadow can generate the building shadow with given location and height of the point light, which can be potentially useful for visual area analysis in urban environment.
  • Analysis: pybdshadow integrated the analysing method based on the properties of sun movement to track the changing position of shadows within a fixed time interval. Based on the grid processing framework provided by TransBigData, pybdshadow is capable of calculating sunshine time on the ground and on the roof.
  • Visualization: Built-in visualization capabilities leverage the visualization package keplergl to interactively visualize building and shadow data in Jupyter notebooks with simple code.

The target audience of pybdshadow includes data science researchers and data engineers in the field of BIM, GIS, energy, environment, and urban computing.

Installation

It is recommended to use Python 3.7, 3.8, 3.9

Using pypi PyPI version

pybdshadow can be installed by using pip install. Before installing pybdshadow, make sure that you have installed the available geopandas package. If you already have geopandas installed, run the following code directly from the command prompt to install pybdshadow:

pip install pybdshadow

Usage

Shadow generated by Sun light

Detail usage can be found in this example. pybdshadow is capable of generating shadows from building geographic data. The buildings are usually store in the data as the form of Polygon object with height information (usually Shapefile or GeoJSON file).

import pandas as pd
import geopandas as gpd
#Read building GeoJSON data
buildings = gpd.read_file(r'data/bd_demo_2.json')

Given a building GeoDataFrame and UTC datetime, pybdshadow can calculate the building shadow based on the sun position obtained by suncalc-py.

import pybdshadow
#Given UTC datetime
date = pd.to_datetime('2022-01-01 12:45:33.959797119')\
    .tz_localize('Asia/Shanghai')\
    .tz_convert('UTC')
#Calculate building shadow for sun light
shadows = pybdshadow.bdshadow_sunlight(buildings,date)

Visualize buildings and shadows using matplotlib.

import matplotlib.pyplot as plt
fig = plt.figure(1, (12, 12))
ax = plt.subplot(111)
# plot buildings
buildings.plot(ax=ax)
# plot shadows
shadows['type'] += ' shadow'
shadows.plot(ax=ax, alpha=0.7,
             column='type',
             categorical=True,
             cmap='Set1_r',
             legend=True)
plt.show()

1651741110878.png

pybdshadow also provide visualization method supported by keplergl.

# visualize buildings and shadows
pybdshadow.show_bdshadow(buildings = buildings,shadows = shadows)

1649161376291.png

Shadow generated by Point light

pybdshadow can also calculate the building shadow generated by point light. Given coordinates and height of the point light:

#Calculate building shadow for point light
shadows = pybdshadow.bdshadow_pointlight(buildings,139.713319,35.552040,200)
#Visualize buildings and shadows
pybdshadow.show_bdshadow(buildings = buildings,shadows = shadows)

1649405838683.png

Shadow coverage analysis

pybdshadow provides the functionality to analysis sunshine time on the roof and on the ground.

Result of shadow coverage on the roof:

1651645524782.png1651975815798.png

Result of sunshine time on the ground:

1651645530892.png1651975824187.png

Dependency

pybdshadow depends on the following packages

Citation information status

Citation information can be found at CITATION.cff.

Contributing to pybdshadow GitHub contributors GitHub commit activity

All contributions, bug reports, bug fixes, documentation improvements, enhancements and ideas are welcome. A detailed overview on how to contribute can be found in the contributing guide on GitHub.

You might also like...
Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Coming soon!

ToxiChat Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Install depen

Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Universal Adversarial Triggers for Attacking and Analyzing NLP This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for

Code for the paper
Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions"

ModelNet-C Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions". For the latest updates, see: sites.google.com

A framework for analyzing computer vision models with simulated data

3DB: A framework for analyzing computer vision models with simulated data Paper Quickstart guide Blog post Installation Follow instructions on: https:

Analyzing basic network responses to novel classes
Analyzing basic network responses to novel classes

novelty-detection Analyzing how AlexNet responds to novel classes with varying degrees of similarity to pretrained classes from ImageNet. If you find

Project page of the paper 'Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network' (ECCVW 2018)
Project page of the paper 'Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network' (ECCVW 2018)

EPSR (Enhanced Perceptual Super-resolution Network) paper This repo provides the test code, pretrained models, and results on benchmark datasets of ou

😇A pyTorch implementation of the DeepMoji model: state-of-the-art deep learning model for analyzing sentiment, emotion, sarcasm etc

------ Update September 2018 ------ It's been a year since TorchMoji and DeepMoji were released. We're trying to understand how it's being used such t

Cross Quality LFW: A database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments

Cross-Quality Labeled Faces in the Wild (XQLFW) Here, we release the database, evaluation protocol and code for the following paper: Cross Quality LFW

Official repository of the paper
Official repository of the paper "A Variational Approximation for Analyzing the Dynamics of Panel Data". Mixed Effect Neural ODE. UAI 2021.

Official repository of the paper (UAI 2021) "A Variational Approximation for Analyzing the Dynamics of Panel Data", Mixed Effect Neural ODE. Panel dat

Comments
  • Could you explain more on the data preparation pipeline?(How to get geojson file from OSM?) much appreciated!

    Could you explain more on the data preparation pipeline?(How to get geojson file from OSM?) much appreciated!

    Is your feature request related to a problem? Please describe. A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]

    Describe the solution you'd like A clear and concise description of what you want to happen.

    Describe alternatives you've considered A clear and concise description of any alternative solutions or features you've considered.

    Additional context Add any other context or screenshots about the feature request here.

    opened by WanliQianKolmostar 4
  • Shadows also before sunrise and after sunset

    Shadows also before sunrise and after sunset

    Hi, thanks for this wonderful package, I'm really enjoying it!

    I've noticed that with pybdshadow.bdshadow_sunlight shadow results are also provided before sunrise and after sunset for the local time, it seems to me there should be an error thrown in this case, since the results are not meaningful (or simply a zero area shadow provided).

    I imagine this type of check is already implemented for the calculations of light/shadow daily hours on a surface.

    opened by gcaria 2
  • [ImgBot] Optimize images

    [ImgBot] Optimize images

    Beep boop. Your images are optimized!

    Your image file size has been reduced by 20% 🎉

    Details

    | File | Before | After | Percent reduction | |:--|:--|:--|:--| | /image/README/1649161376291_1.png | 373.42kb | 249.67kb | 33.14% | | /docs/source/_static/visualize.png | 142.65kb | 95.60kb | 32.98% | | /image/README/1649074615552.png | 25.86kb | 18.00kb | 30.41% | | /docs/source/_static/logo-wordmark-dark.png | 25.86kb | 18.00kb | 30.41% | | /docs/source/_static/logo-wordmark-light.png | 22.20kb | 16.06kb | 27.67% | | /image/README/1649405838683_1.png | 395.68kb | 297.10kb | 24.91% | | /docs/source/example/output_6_1.png | 283.05kb | 230.73kb | 18.48% | | /docs/source/example/output_31_0.png | 56.82kb | 46.96kb | 17.35% | | /image/README/1651975824187.png | 57.54kb | 47.80kb | 16.93% | | /docs/source/example/output_29_0.png | 57.54kb | 47.80kb | 16.93% | | /docs/source/example/output_14_0.png | 413.83kb | 349.48kb | 15.55% | | /image/README/1651741110878.png | 414.83kb | 350.63kb | 15.47% | | /docs/source/example/output_24_1.png | 16.54kb | 14.38kb | 13.09% | | /image/README/1651975815798.png | 37.59kb | 34.22kb | 8.98% | | /docs/source/example/output_27_0.png | 37.59kb | 34.22kb | 8.98% | | /image/README/1651645530892.png | 47.96kb | 46.13kb | 3.81% | | /image/README/1651506285290.png | 44.85kb | 43.24kb | 3.59% | | /image/README/1651645524782.png | 39.38kb | 38.19kb | 3.01% | | /image/README/1651490416315.png | 42.67kb | 41.57kb | 2.58% | | /image/README/1651490411329.png | 39.70kb | 38.88kb | 2.06% | | | | | | | Total : | 2,575.54kb | 2,058.63kb | 20.07% |


    📝 docs | :octocat: repo | 🙋🏾 issues | 🏪 marketplace

    ~Imgbot - Part of Optimole family

    opened by imgbot[bot] 1
  • Shadow on vertical walls

    Shadow on vertical walls

    Hi, As far as I understood from the documentation, pybdshadow is currently able to calculate shadows on the ground and on the roofs of buildings. I was just wondering, is it possible to calculate shadows also on vertical walls of buildings? For my use case, I would not need a complete shadow calculation, I would just need to know if a specific wall surface is shadowed or not (a binary output). To simplify, it would be enough to know if a single point of the wall surface (e.g. the center) is shadowed.

    opened by amaccarini 1
Releases(0.3.3)
Owner
Qing Yu
Python, JavaScript, Spatio-temporal big data, Data visualization
Qing Yu
Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing

FGHV Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing Requirements Python 3.6 Pytorch 1.5.0 Cud

5 Jun 02, 2022
Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning

Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning Update (September 18th, 2021) A supporting document de

Taimur Hassan 1 Mar 16, 2022
Official PyTorch implementation for FastDPM, a fast sampling algorithm for diffusion probabilistic models

Official PyTorch implementation for "On Fast Sampling of Diffusion Probabilistic Models". FastDPM generation on CIFAR-10, CelebA, and LSUN datasets. S

Zhifeng Kong 68 Dec 26, 2022
SCU OlympicsRunning Baseline

Competition 1v1 running Environment check details in Jidi Competition RLChina2021智能体竞赛 做出的修改: 奖励重塑:修改了环境,重新设置了奖励的分配,使得奖励组成不只有零和博弈,还有探索环境的奖励。 算法微调:修改了官

ZiSeoi Wong 2 Nov 23, 2021
Awesome Remote Sensing Toolkit based on PaddlePaddle.

基于飞桨框架开发的高性能遥感图像处理开发套件,端到端地完成从训练到部署的全流程遥感深度学习应用。 最新动态 PaddleRS 即将发布alpha版本!欢迎大家试用 简介 PaddleRS是遥感科研院所、相关高校共同基于飞桨开发的遥感处理平台,支持遥感图像分类,目标检测,图像分割,以及变化检测等常用遥

146 Dec 11, 2022
Image-Stitching - Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm

About The Project Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm (Random Sample Consensus). Author: Andreas P

Andreas Panayiotou 3 Jan 03, 2023
PyTorch module to use OpenFace's nn4.small2.v1.t7 model

OpenFace for Pytorch Disclaimer: This codes require the input face-images that are aligned and cropped in the same way of the original OpenFace. * I m

Pete Tae-hoon Kim 176 Dec 12, 2022
Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

This is the code associated with the paper Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks, published at CVPR 2020.

Thomas Roddick 219 Dec 20, 2022
Implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Environments.

ALPHAMEPOL This repository contains the implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Envir

3 Dec 23, 2021
(NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductive few-shot classification"

SSR (NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductivefew-shot classification" [Paper] [Project webpage]

xshen 29 Dec 06, 2022
Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai

Coursera-deep-learning-specialization - Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai: (i) Neural Networks an

Aman Chadha 1.7k Jan 08, 2023
A framework for multi-step probabilistic time-series/demand forecasting models

JointDemandForecasting.py A framework for multi-step probabilistic time-series/demand forecasting models File stucture JointDemandForecasting contains

Stanford Intelligent Systems Laboratory 3 Sep 28, 2022
Audio2Face - Audio To Face With Python

Audio2Face Discription We create a project that transforms audio to blendshape w

FACEGOOD 724 Dec 26, 2022
Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs

Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs ArXiv Abstract Convolutional Neural Networks (CNNs) have become the de f

Philipp Benz 12 Oct 24, 2022
Pomodoro timer that acknowledges the inexorable, infinite passage of time

Pomodouroboros Most pomodoro trackers assume you're going to start them. But time and tide wait for no one - the great pomodoro of the cosmos is cold

Glyph 66 Dec 13, 2022
A simple Tensorflow based library for deep and/or denoising AutoEncoder.

libsdae - deep-Autoencoder & denoising autoencoder A simple Tensorflow based library for Deep autoencoder and denoising AE. Library follows sklearn st

Rajarshee Mitra 147 Nov 18, 2022
Official code for paper Exemplar Based 3D Portrait Stylization.

3D-Portrait-Stylization This is the official code for the paper "Exemplar Based 3D Portrait Stylization". You can check the paper on our project websi

60 Dec 07, 2022
MultiLexNorm 2021 competition system from ÚFAL

ÚFAL at MultiLexNorm 2021: Improving Multilingual Lexical Normalization by Fine-tuning ByT5 David Samuel & Milan Straka Charles University Faculty of

ÚFAL 13 Jun 28, 2022
StyleGAN2 - Official TensorFlow Implementation

StyleGAN2 - Official TensorFlow Implementation

NVIDIA Research Projects 10.1k Dec 28, 2022
An air quality monitoring service with a Raspberry Pi and a SDS011 sensor.

Raspberry Pi Air Quality Monitor A simple air quality monitoring service for the Raspberry Pi. Installation Clone the repository and run the following

rydercalmdown 24 Dec 09, 2022