Project page of the paper 'Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network' (ECCVW 2018)

Overview

EPSR (Enhanced Perceptual Super-resolution Network) paper

This repo provides the test code, pretrained models, and results on benchmark datasets of our work. We (IPCV_team) won the first place in PIRM2018-SR competition (region 1). We were also ranked as second and thrid in region 2 and 3 respectively. For details refer to our recently accepted paper in ECCV2018 PIRM Workshop.

"Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network", Subeesh Vasu, Nimisha T. M. and A. N. Rajagopalan, Perceptual Image Restoration and Manipulation (PIRM) Workshop and Challenge, Eurpean Conference on Computer Vision Workshops (ECCVW 2018), Munich, Germany, September 2018. [arXiv]

BibTeX

 @inproceedings{vasu2018analyzing,
    author = {Vasu, Subeesh and T.M., Nimisha and Rajagopalan, A.N.},
    title = {Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network},
    booktitle = {European Conference on Computer Vision (ECCV) Workshops},
    year = {2018}}

Results

Visual comparison for 4× SR with bicubic interpolation model on PIRM-self, BSD100, and Urban100 datasets. Here IHR refers to the ground truth HR image. SRCNN, EDSR, DBPN, ENet, and CX are existing works. EPSR1, EPSR2, and EPSR3 are the results of our approach (EPSR) corresponding to region 1, 2, and 3 of PIRM-SR challenge. BNet1, BNet2, and BNet3 are the results of our baseline network.

drawing

Perception-distortion trade-off between BNet and EPSR. For both methods, the above plot has the values corresponding to 19 model weights which span different regions on the perception-distortion plane and the corresponding curves that best fit these values.

drawing

Performance comparison of top 9 methods from PIRM-SR challenge. Methods are ranked based on the PI and RMSE values corresponding to the test data of PIRM-SR. The entries from our approach are highlighted in red. Methods with a marginal difference in PI and RMSE values share the same rank and are indicated with a " * ".

Test

The code is built on the official implementation of EDSR (PyTorch) and tested on Ubuntu 16.04 environment (Python3.6, PyTorch_0.4.0, CUDA8.0) with Titan X GPU. Refer EDSR (PyTorch) for other dependencies. Test code of EPSR can be found in EPSR_testcode.

Results on public benchmark datasets

References

[SRCNN] Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. ECCV 2014

[EDSR] Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks for single image super-resolution. CVPR workshops 2017

[DBPN] Haris, M., Shakhnarovich, G., Ukita, N.: Deep backprojection networks for super-resolution. CVPR 2018

[ENet] Sajjadi, M.S., Sch ̈olkopf, B., Hirsch, M.: Enhancenet: Single image super-resolution through automated texture synthesis. ICCV 2017

[CX] Mechrez, R., Talmi, I., Shama, F., Zelnik-Manor, L. Learning to maintain natural image statistics. arXiv preprint arXiv:1803.04626 (2018)

[PIRM-SR challenge] Blau, Y., Mechrez, R., Timofte, R. 2018 PIRM Challenge on Perceptual Image Super-resolution. arXiv preprint arXiv:1809.07517 (2018)

Acknowledgements

This code is built on EDSR (PyTorch). We thank the authors for sharing their codes of EDSR PyTorch version.

Owner
Subeesh Vasu
Post-doctoral Researcher, Computer Vision Lab
Subeesh Vasu
This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine

LSHTM_RCS This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine (LSHTM) in collabo

Lukas Kopecky 3 Jan 30, 2022
NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring

NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring Uncensored version of the following image can be found at https://i.

notAI.tech 1.1k Dec 29, 2022
Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR

Official implementation for paper "Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR"

Ziyue Feng 72 Dec 09, 2022
load .txt to train YOLOX, same as Yolo others

YOLOX train your data you need generate data.txt like follow format (per line- one image). prepare one data.txt like this: img_path1 x1,y1,x2,y2,clas

LiMingf 18 Aug 18, 2022
MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets)

MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets) Using mixup data augmentation as reguliraztion and tuning the hyper par

Bhanu 2 Jan 16, 2022
Pytorch version of SfmLearner from Tinghui Zhou et al.

SfMLearner Pytorch version This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghu

Clément Pinard 909 Dec 22, 2022
GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning

GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning, as well as corresponding mitigation strategies.

129 Dec 30, 2022
Rayvens makes it possible for data scientists to access hundreds of data services within Ray with little effort.

Rayvens augments Ray with events. With Rayvens, Ray applications can subscribe to event streams, process and produce events. Rayvens leverages Apache

CodeFlare 32 Dec 25, 2022
Code Release for Learning to Adapt to Evolving Domains

EAML Code release for "Learning to Adapt to Evolving Domains" (NeurIPS 2020) Prerequisites PyTorch = 0.4.0 (with suitable CUDA and CuDNN version) tor

23 Dec 07, 2022
TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels.

AutoDSP TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels. About Adaptive filtering algorithms are commonplace in sign

Jonah Casebeer 48 Sep 19, 2022
Pytorch implementation of Masked Auto-Encoder

Masked Auto-Encoder (MAE) Pytorch implementation of Masked Auto-Encoder: Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick

Jiyuan 22 Dec 13, 2022
SoGCN: Second-Order Graph Convolutional Networks

SoGCN: Second-Order Graph Convolutional Networks This is the authors' implementation of paper "SoGCN: Second-Order Graph Convolutional Networks" in Py

Yuehao 7 Aug 16, 2022
[CVPR 2021] Forecasting the panoptic segmentation of future video frames

Panoptic Segmentation Forecasting Colin Graber, Grace Tsai, Michael Firman, Gabriel Brostow, Alexander Schwing - CVPR 2021 [Link to paper] We propose

Niantic Labs 44 Nov 29, 2022
You Only Look One-level Feature (YOLOF), CVPR2021, Detectron2

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides a neat implementation

qiang chen 273 Jan 03, 2023
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
Annotate with anyone, anywhere.

h h is the web app that serves most of the https://hypothes.is/ website, including the web annotations API at https://hypothes.is/api/. The Hypothesis

Hypothesis 2.6k Jan 08, 2023
SPT_LSA_ViT - Implementation for Visual Transformer for Small-size Datasets

Vision Transformer for Small-Size Datasets Seung Hoon Lee and Seunghyun Lee and Byung Cheol Song | Paper Inha University Abstract Recently, the Vision

Lee SeungHoon 87 Jan 01, 2023
Supervised Contrastive Learning for Product Matching

Contrastive Product Matching This repository contains the code and data download links to reproduce the experiments of the paper "Supervised Contrasti

Web-based Systems Group @ University of Mannheim 18 Dec 10, 2022
Distributed Asynchronous Hyperparameter Optimization better than HyperOpt.

UltraOpt : Distributed Asynchronous Hyperparameter Optimization better than HyperOpt. UltraOpt is a simple and efficient library to minimize expensive

98 Aug 16, 2022