Project page of the paper 'Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network' (ECCVW 2018)

Overview

EPSR (Enhanced Perceptual Super-resolution Network) paper

This repo provides the test code, pretrained models, and results on benchmark datasets of our work. We (IPCV_team) won the first place in PIRM2018-SR competition (region 1). We were also ranked as second and thrid in region 2 and 3 respectively. For details refer to our recently accepted paper in ECCV2018 PIRM Workshop.

"Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network", Subeesh Vasu, Nimisha T. M. and A. N. Rajagopalan, Perceptual Image Restoration and Manipulation (PIRM) Workshop and Challenge, Eurpean Conference on Computer Vision Workshops (ECCVW 2018), Munich, Germany, September 2018. [arXiv]

BibTeX

 @inproceedings{vasu2018analyzing,
    author = {Vasu, Subeesh and T.M., Nimisha and Rajagopalan, A.N.},
    title = {Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network},
    booktitle = {European Conference on Computer Vision (ECCV) Workshops},
    year = {2018}}

Results

Visual comparison for 4× SR with bicubic interpolation model on PIRM-self, BSD100, and Urban100 datasets. Here IHR refers to the ground truth HR image. SRCNN, EDSR, DBPN, ENet, and CX are existing works. EPSR1, EPSR2, and EPSR3 are the results of our approach (EPSR) corresponding to region 1, 2, and 3 of PIRM-SR challenge. BNet1, BNet2, and BNet3 are the results of our baseline network.

drawing

Perception-distortion trade-off between BNet and EPSR. For both methods, the above plot has the values corresponding to 19 model weights which span different regions on the perception-distortion plane and the corresponding curves that best fit these values.

drawing

Performance comparison of top 9 methods from PIRM-SR challenge. Methods are ranked based on the PI and RMSE values corresponding to the test data of PIRM-SR. The entries from our approach are highlighted in red. Methods with a marginal difference in PI and RMSE values share the same rank and are indicated with a " * ".

Test

The code is built on the official implementation of EDSR (PyTorch) and tested on Ubuntu 16.04 environment (Python3.6, PyTorch_0.4.0, CUDA8.0) with Titan X GPU. Refer EDSR (PyTorch) for other dependencies. Test code of EPSR can be found in EPSR_testcode.

Results on public benchmark datasets

References

[SRCNN] Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. ECCV 2014

[EDSR] Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks for single image super-resolution. CVPR workshops 2017

[DBPN] Haris, M., Shakhnarovich, G., Ukita, N.: Deep backprojection networks for super-resolution. CVPR 2018

[ENet] Sajjadi, M.S., Sch ̈olkopf, B., Hirsch, M.: Enhancenet: Single image super-resolution through automated texture synthesis. ICCV 2017

[CX] Mechrez, R., Talmi, I., Shama, F., Zelnik-Manor, L. Learning to maintain natural image statistics. arXiv preprint arXiv:1803.04626 (2018)

[PIRM-SR challenge] Blau, Y., Mechrez, R., Timofte, R. 2018 PIRM Challenge on Perceptual Image Super-resolution. arXiv preprint arXiv:1809.07517 (2018)

Acknowledgements

This code is built on EDSR (PyTorch). We thank the authors for sharing their codes of EDSR PyTorch version.

Owner
Subeesh Vasu
Post-doctoral Researcher, Computer Vision Lab
Subeesh Vasu
Dashboard for the COVID19 spread

COVID-19 Data Explorer App A streamlit Dashboard for the COVID-19 spread. The app is live at: [https://covid19.cwerner.ai]. New data is queried from G

Christian Werner 22 Sep 29, 2022
Baseline and template code for node21 detection track

Nodule Detection Algorithm This codebase implements a baseline model, Faster R-CNN, for the nodule detection track in NODE21. It contains all necessar

node21challenge 11 Jan 15, 2022
Put blind watermark into a text with python

text_blind_watermark Put blind watermark into a text. Can be used in Wechat dingding ... How to Use install pip install text_blind_watermark Alice Pu

郭飞 164 Dec 30, 2022
Generative Adversarial Text to Image Synthesis

Text To Image Synthesis This is a tensorflow implementation of synthesizing images. The images are synthesized using the GAN-CLS Algorithm from the pa

Hao 575 Jan 08, 2023
Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices

Face-Mesh Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices. It employs machine learning

Farnam Javadi 9 Dec 21, 2022
Efficient neural networks for analog audio effect modeling

micro-TCN Efficient neural networks for audio effect modeling

Christian Steinmetz 94 Dec 29, 2022
Robot Hacking Manual (RHM). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

RHM: Robot Hacking Manual Download in PDF RHM v0.4 ┃ Read online The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robo

Víctor Mayoral Vilches 233 Dec 30, 2022
CrossMLP - The repository offers the official implementation of our BMVC 2021 paper (oral) in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
Image marine sea litter prediction Shiny

MARLITE Shiny app for floating marine litter detection in aerial images. This directory contains the instructions and software needed to install the S

19 Dec 22, 2022
NALSM: Neuron-Astrocyte Liquid State Machine

NALSM: Neuron-Astrocyte Liquid State Machine This package is a Tensorflow implementation of the Neuron-Astrocyte Liquid State Machine (NALSM) that int

Computational Brain Lab 4 Nov 28, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN.

Ryan Murdock has done it again, combining OpenAI's CLIP and the generator from a BigGAN! This repository wraps up his work so it is easily accessible to anyone who owns a GPU.

Phil Wang 2.3k Jan 09, 2023
A curated list of neural network pruning resources.

A curated list of neural network pruning and related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awesome-deep-learning-papers and Awesome-NAS.

Yang He 1.7k Jan 09, 2023
Code for the Interspeech 2021 paper "AST: Audio Spectrogram Transformer".

AST: Audio Spectrogram Transformer Introduction Citing Getting Started ESC-50 Recipe Speechcommands Recipe AudioSet Recipe Pretrained Models Contact I

Yuan Gong 603 Jan 07, 2023
Powerful unsupervised domain adaptation method for dense retrieval.

Powerful unsupervised domain adaptation method for dense retrieval

Ubiquitous Knowledge Processing Lab 191 Dec 28, 2022
A novel benchmark dataset for Monocular Layout prediction

AutoLay AutoLay: Benchmarking Monocular Layout Estimation Kaustubh Mani, N. Sai Shankar, J. Krishna Murthy, and K. Madhava Krishna Abstract In this pa

Kaustubh Mani 39 Apr 26, 2022
TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning

TransZero++ This repository contains the testing code for the paper "TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning" submitted

Shiming Chen 6 Aug 16, 2022
Randomizes the warps in a stock pokeemerald repo.

pokeemerald warp randomizer Randomizes the warps in a stock pokeemerald repo. Usage Instructions Install networkx and matplotlib via pip3 or similar.

Max Thomas 6 Mar 17, 2022
2.86% and 15.85% on CIFAR-10 and CIFAR-100

Shake-Shake regularization This repository contains the code for the paper Shake-Shake regularization. This arxiv paper is an extension of Shake-Shake

Xavier Gastaldi 294 Nov 22, 2022
[SIGGRAPH Asia 2021] Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN

Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN [Paper] [Project Website] [Output resutls] Official Pytorch i

Badour AlBahar 215 Dec 17, 2022