Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation"

Related tags

Deep LearningK2T
Overview

Keyword2Text

This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation", if you find this useful and use it for your own research, please cite us.

Setup

  1. Download and unzip the repository.
  2. Create a new conda environment and install the required libraries from the requirements.txt file.
conda create -n k2t python=3.6
conda activate k2t
pip install -r requirements.txt

A GPU will be required to run the experiments. Make sure you have a results folder.

Run Model

Hyperparameter Study

Uncomment the appropriate lines of run.sh to run the hyperparameter experiments from the paper. For example,

python main.py -mode='next' -file_name=/data/50_keywordsets_eval/word_sets.txt -results_subfolder=guide_vs_no_guide_beams -weight=10.0 -top_p=0.9 -n_generated_sentences=90 -do_guarantee=True

runs K2T with ordered guide words (mode='next') on the random keywords dataset. It runs with lambda=weight=10, nucleus sampling with top-p=0.9, number of generated tokens = 90, and no weight annealing to guarantee word appearance. The results are saved in results/tmp

ROC Story dataset

Uncomment the appropriate line of run.sh to run the model on the ROC story dataset:

python main.py -mode='max' -file_name=/data/ROC/ROCStories_20_storylines_500_0.txt -results_subfolder=final4_ -weight=5.0 -top_p=0.9 -n_generated_sentences=-7 -n_beams=4 -do_guarantee=True -task='ROC'

News Article dataset

Uncomment the appropriate line of run.sh to run the model on the News Article story dataset:

python main_DBS.py -mode='max' -file_name=/data/keyword_to_articles -results_subfolder=tmp -weight=5.0 -top_p=0.9 -n_generated_sentences=-15 -n_beams=4 -do_guarantee=True -task='key2article'

Contents

├── data
│   ├── 50_keywordsets_eval
│   │   └── word_sets.txt
│   ├── keyword_to_articles
│   │   ├── test_10.txt
│   │   ├── test_12.txt
│   │   ├── test_13.txt
│   │   ├── test_14.txt
│   │   ├── test_15.txt
│   │   ├── test_16.txt
│   │   ├── test_4.txt
│   │   ├── test_5.txt
│   │   ├── test_8.txt
│   │   └── test_9.txt
│   └── ROC
│       └── ROCStories_20_storylines_500_0.txt
├── encode_keywords.py
├── encode_keywords_word2vec.py
├── main.py
├── metrics_degen.py
├── metrics_degen_run.sh
├── perplexity.py
├── README.md
├── requirements.txt
├── results
├── run.sh
└── utility_gpt.py


xitorch: differentiable scientific computing library

xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely used in scientific computing applications as well as deep learning.

24 Apr 15, 2021
Towards Improving Embedding Based Models of Social Network Alignment via Pseudo Anchors

PSML paper: Towards Improving Embedding Based Models of Social Network Alignment via Pseudo Anchors PSML_IONE,PSML_ABNE,PSML_DEEPLINK,PSML_SNNA: numpy

13 Nov 27, 2022
Image to Image translation, image generataton, few shot learning

Semi-supervised Learning for Few-shot Image-to-Image Translation [paper] Abstract: In the last few years, unpaired image-to-image translation has witn

yaxingwang 49 Nov 18, 2022
🕵 Artificial Intelligence for social control of public administration

Non-tech crash course into Operação Serenata de Amor Tech crash course into Operação Serenata de Amor Contributing with code and tech skills Supportin

Open Knowledge Brasil - Rede pelo Conhecimento Livre 4.4k Dec 31, 2022
Complete the code of prefix-tuning in low data setting

Prefix Tuning Note: 作者在论文中提到使用真实的word去初始化prefix的操作(Initializing the prefix with activations of real words,significantly improves generation)。我在使用作者提供的

Andrew Zeng 4 Jul 11, 2022
Boost learning for GNNs from the graph structure under challenging heterophily settings. (NeurIPS'20)

Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu,

GEMS Lab: Graph Exploration & Mining at Scale, University of Michigan 70 Dec 18, 2022
The Codebase for Causal Distillation for Language Models.

Causal Distillation for Language Models Zhengxuan Wu*,Atticus Geiger*, Josh Rozner, Elisa Kreiss, Hanson Lu, Thomas Icard, Christopher Potts, Noah D.

Zen 20 Dec 31, 2022
A deep learning model for style-specific music generation.

DeepJ: A model for style-specific music generation https://arxiv.org/abs/1801.00887 Abstract Recent advances in deep neural networks have enabled algo

Henry Mao 704 Nov 23, 2022
The official implementation of You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient.

You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient (paper) @misc{zhang2021compress,

46 Dec 07, 2022
Azion the best solution of Edge Computing in the world.

Azion Edge Function docker action Create or update an Edge Functions on Azion Edge Nodes. The domain name is the key for decision to a create or updat

8 Jul 16, 2022
High-resolution networks and Segmentation Transformer for Semantic Segmentation

High-resolution networks and Segmentation Transformer for Semantic Segmentation Branches This is the implementation for HRNet + OCR. The PyTroch 1.1 v

HRNet 2.8k Jan 07, 2023
The source code of the paper "Understanding Graph Neural Networks from Graph Signal Denoising Perspectives"

GSDN-F and GSDN-EF This repository provides a reference implementation of GSDN-F and GSDN-EF as described in the paper "Understanding Graph Neural Net

Guoji Fu 18 Nov 14, 2022
VIsually-Pivoted Audio and(N) Text

VIP-ANT: VIsually-Pivoted Audio and(N) Text Code for the paper Connecting the Dots between Audio and Text without Parallel Data through Visual Knowled

Yän.PnG 16 Nov 04, 2022
links and status of cool gradio demos

awesome-demos This is a list of some wonderful demos & applications built with Gradio. Here's how to contribute yours! 🖊️ Natural language processing

Gradio 96 Dec 30, 2022
Code for "Single-view robot pose and joint angle estimation via render & compare", CVPR 2021 (Oral).

Single-view robot pose and joint angle estimation via render & compare Yann Labbé, Justin Carpentier, Mathieu Aubry, Josef Sivic CVPR: Conference on C

Yann Labbé 51 Oct 14, 2022
Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation

Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation Our paper is accepted by ICCV2021. Picture: Overview of the proposed Plug-an

Yunfei Liu 32 Dec 10, 2022
Bayesian Neural Networks in PyTorch

We present the new scheme to compute Monte Carlo estimator in Bayesian VI settings with almost no memory cost in GPU, regardles of the number of sampl

Jurijs Nazarovs 7 May 03, 2022
Additional functionality for use with fastai’s medical imaging module

fmi Adding additional functionality to fastai's medical imaging module To learn more about medical imaging using Fastai you can view my blog Install g

14 Oct 31, 2022
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 Oral paper PiCO; also see our Project

王皓波 147 Jan 07, 2023
(CVPR 2022 Oral) Official implementation for "Surface Representation for Point Clouds"

RepSurf - Surface Representation for Point Clouds [CVPR 2022 Oral] By Haoxi Ran* , Jun Liu, Chengjie Wang ( * : corresponding contact) The pytorch off

Haoxi Ran 264 Dec 23, 2022