Unofficial implementation of PatchCore anomaly detection

Overview

PatchCore anomaly detection

Unofficial implementation of PatchCore(new SOTA) anomaly detection model

Original Paper : Towards Total Recall in Industrial Anomaly Detection (Jun 2021)
Karsten Roth, Latha Pemula, Joaquin Zepeda, Bernhard Schölkopf, Thomas Brox, Peter Gehler

https://arxiv.org/abs/2106.08265
https://paperswithcode.com/sota/anomaly-detection-on-mvtec-ad

plot

notice(21/06/18) :
This code is not yet verified. Any feedback is appreciated.
updates(21/06/21) :

  • I used sklearn's SparseRandomProjection(ep=0.9) for random projection. I'm not confident with this.
  • I think exact value of "b nearest patch-features" is not presented in the paper. I just set 9. (args.n_neighbors)
  • In terms of NN search, author used "faiss". but not implemented in this code yet.
  • sample embeddings/carpet/embedding.pickle => coreset_sampling_ratio=0.001

updates(21/06/26) :

  • A critical issue related to "locally aware patch" raised and fixed. Score table is updated.

Usage

# install python 3.6, torch==1.8.1, torchvision==0.9.1
pip install -r requirements.txt

python train.py --phase train or test --dataset_path .../mvtec_anomaly_detection --category carpet --project_root_path path/to/save/results --coreset_sampling_ratio 0.01 --n_neighbors 9'

# for fast try just specify your dataset_path and run
python train.py --phase test --dataset_path .../mvtec_anomaly_detection --project_root_path ./

MVTecAD AUROC score (PatchCore-1%, mean of n trials)

Category Paper
(image-level)
This code
(image-level)
Paper
(pixel-level)
This code
(pixel-level)
carpet 0.980 0.991(1) 0.989 0.989(1)
grid 0.986 0.975(1) 0.986 0.975(1)
leather 1.000 1.000(1) 0.993 0.991(1)
tile 0.994 0.994(1) 0.961 0.949(1)
wood 0.992 0.989(1) 0.951 0.936(1)
bottle 1.000 1.000(1) 0.985 0.981(1)
cable 0.993 0.995(1) 0.982 0.983(1)
capsule 0.980 0.976(1) 0.988 0.989(1)
hazelnut 1.000 1.000(1) 0.986 0.985(1)
metal nut 0.997 0.999(1) 0.984 0.984(1)
pill 0.970 0.959(1) 0.971 0.977(1)
screw 0.964 0.949(1) 0.992 0.977(1)
toothbrush 1.000 1.000(1) 0.985 0.986(1)
transistor 0.999 1.000(1) 0.949 0.972(1)
zipper 0.992 0.995(1) 0.988 0.984(1)
mean 0.990 0.988 0.980 0.977

Code Reference

kcenter algorithm :
https://github.com/google/active-learning
embedding concat function :
https://github.com/xiahaifeng1995/PaDiM-Anomaly-Detection-Localization-master

Owner
Changwoo Ha
ML & DL
Changwoo Ha
Text-to-Image generation

Generate vivid Images for Any (Chinese) text CogView is a pretrained (4B-param) transformer for text-to-image generation in general domain. Read our p

THUDM 1.3k Dec 29, 2022
Semantic Segmentation for Aerial Imagery using Convolutional Neural Network

This repo has been deprecated because whole things are re-implemented by using Chainer and I did refactoring for many codes. So please check this newe

Shunta Saito 27 Sep 23, 2022
Neural models of common sense. 🤖

Unicorn on Rainbow Neural models of common sense. This repository is for the paper: Unicorn on Rainbow: A Universal Commonsense Reasoning Model on a N

AI2 60 Jan 05, 2023
A PyTorch implementation of the architecture of Mask RCNN

EDIT (AS OF 4th NOVEMBER 2019): This implementation has multiple errors and as of the date 4th, November 2019 is insufficient to be utilized as a reso

Sai Himal Allu 975 Dec 30, 2022
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Contributors of this repo: Zhibo Zhang ( Zhibo (Darren) Zhang 18 Nov 01, 2022

Course content and resources for the AIAIART course.

AIAIART course This repo will house the notebooks used for the AIAIART course. Part 1 (first four lessons) ran via Discord in September/October 2021.

Jonathan Whitaker 492 Jan 06, 2023
Bib-parser - Convenient script to parse .bib files with the ACM Digital Library like metadata

Bib Parser Convenient script to parse .bib files with the ACM Digital Library li

Mehtab Iqbal (Shahan) 1 Jan 26, 2022
Video Autoencoder: self-supervised disentanglement of 3D structure and motion

Video Autoencoder: self-supervised disentanglement of 3D structure and motion This repository contains the code (in PyTorch) for the model introduced

157 Dec 22, 2022
A PyTorch based deep learning library for drug pair scoring.

Documentation | External Resources | Datasets | Examples ChemicalX is a deep learning library for drug-drug interaction, polypharmacy side effect and

AstraZeneca 597 Dec 30, 2022
DexterRedTool - Dexter's Red Team Tool that creates cronjob/task scheduler to consistently creates users

DexterRedTool Author: Dexter Delandro CSEC 473 - Spring 2022 This tool persisten

2 Feb 16, 2022
Implementation of DropLoss for Long-Tail Instance Segmentation in Pytorch

[AAAI 2021]DropLoss for Long-Tail Instance Segmentation [AAAI 2021] DropLoss for Long-Tail Instance Segmentation Ting-I Hsieh*, Esther Robb*, Hwann-Tz

Tim 37 Dec 02, 2022
Code and data for "TURL: Table Understanding through Representation Learning"

TURL This Repo contains code and data for "TURL: Table Understanding through Representation Learning". Environment and Setup Data Pretraining Finetuni

SunLab-OSU 63 Nov 23, 2022
Awesome Transformers in Medical Imaging

This repo supplements our Survey on Transformers in Medical Imaging Fahad Shamshad, Salman Khan, Syed Waqas Zamir, Muhammad Haris Khan, Munawar Hayat,

Fahad Shamshad 666 Jan 06, 2023
The missing CMake project initializer

cmake-init - The missing CMake project initializer Opinionated CMake project initializer to generate CMake projects that are FetchContent ready, separ

1k Jan 01, 2023
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.

(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac

BoomStar 51 Dec 13, 2022
Official implementation of the paper Chunked Autoregressive GAN for Conditional Waveform Synthesis

PyEmits, a python package for easy manipulation in time-series data. Time-series data is very common in real life. Engineering FSI industry (Financial

Descript 150 Dec 06, 2022
ECLARE: Extreme Classification with Label Graph Correlations

ECLARE ECLARE: Extreme Classification with Label Graph Correlations @InProceedings{Mittal21b, author = "Mittal, A. and Sachdeva, N. and Agrawal

Extreme Classification 35 Nov 06, 2022
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures

SCICAP: Scientific Figures Dataset This is the Github repo of the EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures (Hsu

Edward 26 Nov 21, 2022
A SAT-based sudoku solver

SAT Sudoku solver A SAT-based Sudoku solver made in the context of a small project in the "Logic Problem Solving" class in the first year at the Polyt

Alexandre Malfreyt 5 Apr 15, 2022