This codebase is the official implementation of Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization (NeurIPS2021, Spotlight)

Related tags

Deep LearningT3A
Overview

Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization

This codebase is the official implementation of Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization (NeurIPS2021, Spotlight). This codebase is mainly based on DomainBed, with following modifications:

  • enable to use various backbone networks including Big Transfer (BiT), Vision Transformers (ViT, DeiT, HViT), and MLP-Mixer.
  • enable to test test-time adaptation method (T3A and Tent).

Installation

CUDA/Python

git clone [email protected]:matsuolab/Domainbed_contrib.git
cd Domainbed_contrib/docker
docker build -t {image_name} .
docker run -it -h `hostname` --runtime=nvidia -v /path/to/Domainbed_contrib /path/to/anyware --shm-size=40gb --name {container_name} {image_name}

Python libralies

We use pipenv for package management.

cd /path/to/Domainbed_contrib
pip install pipenv
pipenv install
pipenv shell
pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.8.0+cu102.html

Quick start

(1) Downlload the datasets

python -m domainbed.scripts.download --data_dir=/my/datasets/path --dataset pacs

Note: change --dataset pacs for downloading other datasets (e.g., vlcs, office_home, terra_incognita).

(2) Train a model on source domains

python -m domainbed.scripts.train\
       --data_dir /my/datasets/path\
       --output_dir /my/pretrain/path\
       --algorithm ERM\
       --dataset PACS\
       --hparams "{\"backbone\": \"resnet50\"}" 

This scripts will produce new directory /my/pretrain/path, which include the full training log.

Note: change --dataset PACS for training on other datasets (e.g., VLCS, OfficeHome, TerraIncognita).

Note: change --hparams "{\"backbone\": \"resnet50\"}" for using other backbones (e.g., resnet18, ViT-B16, HViT).

(3) Evaluate model with test time adaptation (Table 1, Table 2, Figure 2)

python -m domainbed.scripts.unsupervised_adaptation\
       --input_dir=/my/pretrain/path\
       --adapt_algorithm=T3A

This scripts will produce a new file in /my/pretrain/path, whose name is results_{adapt_algorithm}.jsonl.

Note: change --adapt_algorithm=T3A for using other test time adaptation methods (T3A, Tent, or TentClf).

(4) Evaluate model with fine-tuning classifier(Figure 1)

python -m domainbed.scripts.supervised_adaptation\
       --input_dir=/my/pretrain/path\
       --ft_mode=clf

This scripts will produce a new file in /my/pretrain/path, whose name is results_{ft_mode}.jsonl.

Available backbones

  • resnet18
  • resnet50
  • BiT-M-R50x3
  • BiT-M-R101x3
  • BiT-M-R152x2
  • ViT-B16
  • ViT-L16
  • DeiT
  • Hybrid ViT (HViT)
  • MLP-Mixer (Mixer-L16)

Reproducing results

Table 1 and Figure 2 (Tuned ERM and CORAL)

You can use scripts/hparam_search.sh. Specifically, for each dataset and base algorithm, you can just type a following command.

sh scripts/hparam_search.sh resnet50 PACS ERM

Note that, it automatically starts 240 jobs, and take many times to finish.

Table 2 and Figure 1 (ERM with various backbone)

You can use scripts/launch.sh. Specifically, for each backbone, you can just type following three commands.

sh scripts/launch.sh pretrain resnet50 10 3 local
sh scripts/launch.sh sup resnet50 10 3 local
sh scripts/launch.sh unsup resnet50 10 3 local

Other results

For table 1, we used scores reported by In Search of Lost Domain Generalization. Full results for the reported scores in LaTeX format available here. Note: We only used scores for VLCS, PACS, OfficeHome, and TerraIncognita. We used the resutls with IIDAccuracySelectionMethod.

License

This source code is released under the MIT license, included here.

Fastquant - Backtest and optimize your trading strategies with only 3 lines of code!

fastquant đŸ€“ Bringing backtesting to the mainstream fastquant allows you to easily backtest investment strategies with as few as 3 lines of python cod

Lorenzo Ampil 1k Dec 29, 2022
This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs)

Description This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs) in [Gardy et

Ludovic Gardy 0 Feb 09, 2022
Logistic Bandit experiments. Official code for the paper "Jointly Efficient and Optimal Algorithms for Logistic Bandits".

Code for the paper Jointly Efficient and Optimal Algorithms for Logistic Bandits, by Louis Faury, Marc Abeille, Clément CalauzÚnes and Kwang-Sun Jun.

Faury Louis 1 Jan 22, 2022
CMT: Convolutional Neural Networks Meet Vision Transformers

CMT: Convolutional Neural Networks Meet Vision Transformers [arxiv] 1. Introduction This repo is the CMT model which impelement with pytorch, no refer

FlyEgle 83 Dec 30, 2022
[ICCV2021] Official Pytorch implementation for SDGZSL (Semantics Disentangling for Generalized Zero-Shot Learning)

Semantics Disentangling for Generalized Zero-shot Learning This is the official implementation for paper Zhi Chen, Yadan Luo, Ruihong Qiu, Zi Huang, J

25 Dec 06, 2022
Cours d'Algorithmique Appliquée avec Python pour BTS SIO SISR

Course: Introduction to Applied Algorithms with Python (in French) This is the source code of the website for the Applied Algorithms with Python cours

Loic Yvonnet 0 Jan 27, 2022
Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper

AnimeGAN - Deep Convolutional Generative Adverserial Network PyTorch implementation of DCGAN introduced in the paper: Unsupervised Representation Lear

Rohit Kukreja 23 Jul 21, 2022
Voila - VoilĂ  turns Jupyter notebooks into standalone web applications

Rendering of live Jupyter notebooks with interactive widgets. Introduction VoilĂ  turns Jupyter notebooks into standalone web applications. Unlike the

VoilĂ  Dashboards 4.5k Jan 03, 2023
[CVPR 2021] Monocular depth estimation using wavelets for efficiency

Single Image Depth Prediction with Wavelet Decomposition Michaël Ramamonjisoa, Michael Firman, Jamie Watson, Vincent Lepetit and Daniyar Turmukhambeto

Niantic Labs 205 Jan 02, 2023
T2F: text to face generation using Deep Learning

⭐ [NEW] ⭐ T2F - 2.0 Teaser (coming soon ...) Please note that all the faces in the above samples are generated ones. The T2F 2.0 will be using MSG-GAN

Animesh Karnewar 533 Dec 22, 2022
ShapeGlot: Learning Language for Shape Differentiation

ShapeGlot: Learning Language for Shape Differentiation Created by Panos Achlioptas, Judy Fan, Robert X.D. Hawkins, Noah D. Goodman, Leonidas J. Guibas

Panos 32 Dec 23, 2022
PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules

Dynamic Routing Between Capsules - PyTorch implementation PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules from Sara Sabour,

Adam Bielski 475 Dec 24, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
CS550 Machine Learning course project on CNN Detection.

CNN Detection (CS550 Machine Learning Project) Team Members (Tensor) : Yadava Kishore Chodipilli (11940310) Thashmitha BS (11941250) This is a work do

yaadava_kishore 2 Jan 30, 2022
3.8% and 18.3% on CIFAR-10 and CIFAR-100

Wide Residual Networks This code was used for experiments with Wide Residual Networks (BMVC 2016) http://arxiv.org/abs/1605.07146 by Sergey Zagoruyko

Sergey Zagoruyko 1.2k Dec 29, 2022
You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors

You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors In this paper, we propose a novel local descriptor-based fra

Haiping Wang 80 Dec 15, 2022
Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation. In CVPR 2022.

Nonuniform-to-Uniform Quantization This repository contains the training code of N2UQ introduced in our CVPR 2022 paper: "Nonuniform-to-Uniform Quanti

Zechun Liu 60 Dec 28, 2022
This project aims to be a handler for input creation and running of multiple RICEWQ simulations.

What is autoRICEWQ? This project aims to be a handler for input creation and running of multiple RICEWQ simulations. What is RICEWQ? From the descript

Yass Fuentes 1 Feb 01, 2022
The Pytorch code of "Joint Distribution Matters: Deep Brownian Distance Covariance for Few-Shot Classification", CVPR 2022 (Oral).

DeepBDC for few-shot learning        Introduction In this repo, we provide the implementation of the following paper: "Joint Distribution Matters: Dee

FeiLong 116 Dec 19, 2022
Hand gesture recognition model that can be used as a remote control for a smart tv.

Gesture_recognition The training data consists of a few hundred videos categorised into one of the five classes. Each video (typically 2-3 seconds lon

Pratyush Negi 1 Aug 11, 2022