This codebase is the official implementation of Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization (NeurIPS2021, Spotlight)

Related tags

Deep LearningT3A
Overview

Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization

This codebase is the official implementation of Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization (NeurIPS2021, Spotlight). This codebase is mainly based on DomainBed, with following modifications:

  • enable to use various backbone networks including Big Transfer (BiT), Vision Transformers (ViT, DeiT, HViT), and MLP-Mixer.
  • enable to test test-time adaptation method (T3A and Tent).

Installation

CUDA/Python

git clone [email protected]:matsuolab/Domainbed_contrib.git
cd Domainbed_contrib/docker
docker build -t {image_name} .
docker run -it -h `hostname` --runtime=nvidia -v /path/to/Domainbed_contrib /path/to/anyware --shm-size=40gb --name {container_name} {image_name}

Python libralies

We use pipenv for package management.

cd /path/to/Domainbed_contrib
pip install pipenv
pipenv install
pipenv shell
pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.8.0+cu102.html

Quick start

(1) Downlload the datasets

python -m domainbed.scripts.download --data_dir=/my/datasets/path --dataset pacs

Note: change --dataset pacs for downloading other datasets (e.g., vlcs, office_home, terra_incognita).

(2) Train a model on source domains

python -m domainbed.scripts.train\
       --data_dir /my/datasets/path\
       --output_dir /my/pretrain/path\
       --algorithm ERM\
       --dataset PACS\
       --hparams "{\"backbone\": \"resnet50\"}" 

This scripts will produce new directory /my/pretrain/path, which include the full training log.

Note: change --dataset PACS for training on other datasets (e.g., VLCS, OfficeHome, TerraIncognita).

Note: change --hparams "{\"backbone\": \"resnet50\"}" for using other backbones (e.g., resnet18, ViT-B16, HViT).

(3) Evaluate model with test time adaptation (Table 1, Table 2, Figure 2)

python -m domainbed.scripts.unsupervised_adaptation\
       --input_dir=/my/pretrain/path\
       --adapt_algorithm=T3A

This scripts will produce a new file in /my/pretrain/path, whose name is results_{adapt_algorithm}.jsonl.

Note: change --adapt_algorithm=T3A for using other test time adaptation methods (T3A, Tent, or TentClf).

(4) Evaluate model with fine-tuning classifier(Figure 1)

python -m domainbed.scripts.supervised_adaptation\
       --input_dir=/my/pretrain/path\
       --ft_mode=clf

This scripts will produce a new file in /my/pretrain/path, whose name is results_{ft_mode}.jsonl.

Available backbones

  • resnet18
  • resnet50
  • BiT-M-R50x3
  • BiT-M-R101x3
  • BiT-M-R152x2
  • ViT-B16
  • ViT-L16
  • DeiT
  • Hybrid ViT (HViT)
  • MLP-Mixer (Mixer-L16)

Reproducing results

Table 1 and Figure 2 (Tuned ERM and CORAL)

You can use scripts/hparam_search.sh. Specifically, for each dataset and base algorithm, you can just type a following command.

sh scripts/hparam_search.sh resnet50 PACS ERM

Note that, it automatically starts 240 jobs, and take many times to finish.

Table 2 and Figure 1 (ERM with various backbone)

You can use scripts/launch.sh. Specifically, for each backbone, you can just type following three commands.

sh scripts/launch.sh pretrain resnet50 10 3 local
sh scripts/launch.sh sup resnet50 10 3 local
sh scripts/launch.sh unsup resnet50 10 3 local

Other results

For table 1, we used scores reported by In Search of Lost Domain Generalization. Full results for the reported scores in LaTeX format available here. Note: We only used scores for VLCS, PACS, OfficeHome, and TerraIncognita. We used the resutls with IIDAccuracySelectionMethod.

License

This source code is released under the MIT license, included here.

Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models

Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models Abstract Many applications of generative models rely on the marginali

Stanford Intelligent Systems Laboratory 9 Jun 06, 2022
DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors

DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors By Anargyros Chatzitofis, Dimitris Zarpalas, Stefanos Kollias

tofis 24 Oct 08, 2022
This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?".

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?". Code ov

ICLR 2022 Author 934 Dec 30, 2022
Minimal deep learning library written from scratch in Python, using NumPy/CuPy.

SmallPebble Project status: experimental, unstable. SmallPebble is a minimal/toy automatic differentiation/deep learning library written from scratch

Sidney Radcliffe 92 Dec 30, 2022
Unsupervised clustering of high content screen samples

Microscopium Unsupervised clustering and dataset exploration for high content screens. See microscopium in action Public dataset BBBC021 from the Broa

60 Dec 05, 2022
Social Network Ads Prediction

Social network advertising, also social media targeting, is a group of terms that are used to describe forms of online advertising that focus on social networking services.

Khazar 2 Jan 28, 2022
A python code to convert Keras pre-trained weights to Pytorch version

Weights_Keras_2_Pytorch 最近想在Pytorch项目里使用一下谷歌的NIMA,但是发现没有预训练好的pytorch权重,于是整理了一下将Keras预训练权重转为Pytorch的代码,目前是支持Keras的Conv2D, Dense, DepthwiseConv2D, Batch

Liu Hengyu 2 Dec 16, 2021
University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN

Music-Sentiment-Transfer University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN Poster: Music Sentiment Transfer

Miles Sigel 2 Jan 24, 2022
This repository provides an unified frameworks to train and test the state-of-the-art few-shot font generation (FFG) models.

FFG-benchmarks This repository provides an unified frameworks to train and test the state-of-the-art few-shot font generation (FFG) models. What is Fe

Clova AI Research 101 Dec 27, 2022
Codes accompanying the paper "Learning Nearly Decomposable Value Functions with Communication Minimization" (ICLR 2020)

NDQ: Learning Nearly Decomposable Value Functions with Communication Minimization Note This codebase accompanies paper Learning Nearly Decomposable Va

Tonghan Wang 69 Nov 26, 2022
Experiments and code to generate the GINC small-scale in-context learning dataset from "An Explanation for In-context Learning as Implicit Bayesian Inference"

GINC small-scale in-context learning dataset GINC (Generative In-Context learning Dataset) is a small-scale synthetic dataset for studying in-context

P-Lambda 29 Dec 19, 2022
A library for uncertainty quantification based on PyTorch

Torchuq [logo here] TorchUQ is an extensive library for uncertainty quantification (UQ) based on pytorch. TorchUQ currently supports 10 representation

TorchUQ 96 Dec 12, 2022
Video Representation Learning by Recognizing Temporal Transformations. In ECCV, 2020.

Video Representation Learning by Recognizing Temporal Transformations [Project Page] Simon Jenni, Givi Meishvili, and Paolo Favaro. In ECCV, 2020. Thi

Simon Jenni 46 Nov 14, 2022
OpenMMLab Detection Toolbox and Benchmark

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

OpenMMLab 22.5k Jan 05, 2023
🕹️ Official Implementation of Conditional Motion In-betweening (CMIB) 🏃

Conditional Motion In-Betweening (CMIB) Official implementation of paper: Conditional Motion In-betweeening. Paper(arXiv) | Project Page | YouTube in-

Jihoon Kim 81 Dec 22, 2022
Vit-ImageClassification - Pytorch ViT for Image classification on the CIFAR10 dataset

Vit-ImageClassification Introduction This project uses ViT to perform image clas

Kaicheng Yang 4 Jun 01, 2022
Implementation of Continuous Sparsification, a method for pruning and ticket search in deep networks

Continuous Sparsification Implementation of Continuous Sparsification (CS), a method based on l_0 regularization to find sparse neural networks, propo

Pedro Savarese 23 Dec 07, 2022
Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image

NonCuboidRoom Paper Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image Cheng Yang*, Jia Zheng*, Xili Dai, Rui Tang, Yi Ma, Xiao

67 Dec 15, 2022
PyMove is a Python library to simplify queries and visualization of trajectories and other spatial-temporal data

Use PyMove and go much further Information Package Status License Python Version Platforms Build Status PyPi version PyPi Downloads Conda version Cond

Insight Data Science Lab 64 Nov 15, 2022
Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Gabriel Huang 70 Jan 07, 2023