Code for ICLR 2021 Paper, "Anytime Sampling for Autoregressive Models via Ordered Autoencoding"

Overview

Anytime Autoregressive Model

Anytime Sampling for Autoregressive Models via Ordered Autoencoding , ICLR 21

​ Yilun Xu, Yang Song, Sahaj Gara, Linyuan Gong, Rui Shu, Aditya Grover, Stefano Ermon

A new family of autoregressive model that enables anytime sampling​! 😃

Experiment 1: Image generation

Training:

  • Step 1: Pretrain VQ-VAE with full code length:
python vqvae.py --hidden-size latent-size --k codebook-size --dataset name-of-dataset --data-folder paht-to-dataset  --out-path path-to-model --pretrain

latent-size: latent code length
codebook-size: codebook size
name-of-dataset: mnist / cifar10 / celeba
path-to-dataset: path to the roots of dataset
path-to-model: path to save checkpoints
  • Step 2: Train ordered VQ-VAE:
python vqvae.py --hidden-size latent-size --k codebook-size --dataset name-of-dataset --data-folder paht-to-dataset  --out-path path-to-model --restore-checkpoint path-to-checkpoint --lr learning-rate

latent-size: latent code length
codebook-size: codebook size
name-of-dataset: mnist / cifar10 / celeba
path-to-dataset: path to the roots of dataset
path-to-model: path to save checkpoints
path-to-checkpoint: the path of the best checkpoint in Step 1
learning-rate: learning rate (recommended:1e-3)

  • Step 3: Train autoregressive model
python train_ar.py --task integer_sequence_modeling \
path-to-dumped-codes --vocab-size codebook-size --tokens-per-sample latent-size \
--ae-dataset name-of-dataset --ae-data-path path to the roots of dataset --ae-checkpoint path-to-checkpoint --ae-batch-size 512 \
--arch transformer_lm --dropout dropout-rate --attention-dropout dropout-rate --activation-dropout dropout-rate \
--optimizer adam --adam-betas '(0.9, 0.98)' --adam-eps 1e-6 --weight-decay 0.1 --clip-norm 0.0 \
--lr 0.002 --lr-scheduler inverse_sqrt --warmup-updates 3000 --warmup-init-lr 1e-07 \
--max-sentences ar-batch-size \
--fp16 \
--max-update iterations \
--seed 2 \
--log-format json --log-interval 10000000 --no-epoch-checkpoints --no-last-checkpoints \
--save-dir path-to-model

path-to-dumped-codes: path to the dumped codes of VQ-VAE model (fasten training process)
dropout-rate: dropout rate
latent-size: latent code length
codebook-size: codebook size
name-of-dataset: mnist / cifar10 / celeba
path-to-dataset: path to the roots of dataset
path-to-model: path to save checkpoints
path-to-checkpoint: the path of the best checkpoint in Step 2
ar-batch-size: batch size of autorregressive model
iterations: training iterations

Anytime sampling (Inference):

python3 generate.py --n-samples number-of-samples --out-path paht-to-img \
--tokens-per-sample latent-size --vocab-size codebook-size --tokens-per-target code-num \
--ae-checkpoint path-to-ae --ae-batch-size 512 \
--ar-checkpoint path-to-ar --ar-batch-size batch-size
(--ae_celeba --ae_mnist)
number-of-samples: number of samples to be generated
path-to-img: path to the generated samples
latent-size: latent code length
codebook-size: codebook size
code-num: number of codes used to generated (Anytime sampling!)
path-to-ae: path to the VQ-VAE checkpoint in Step 2
path-to-ar: path to the Transformer checkpoint in Step 3
batch-size: batch size for Transforer
ae_celeba: store_true for generating CelebA
ae_mnist: store_true for generating mnist

Experiment 2: Audio Generation

Firstly cd audio-wave/src.

Training:

  • Step 1: Pretrain VQ-VAE with full code length:
python3 main.py -ex ../configuration/experimens_wave_vq_whole_bigger.jason
  • Step 2: Train ordered VQ-VAE:
python3 main.py -ex ../configuration/experimens_wave_vq_whole_bigger_u.json
  • Step 3: Training Transformerr models:

    • A more step: dump the codebook by: (Will merge this step in future version)
    python3 main.py -ex ../configuration/experimens_wave_vq_whole_bigger_u.json --dump
python train_ar.py --task integer_sequence_modeling \
path-to-dumped-codes --vocab-size codebook-size --tokens-per-sample latent-size \
--arch transformer_lm --dropout dropout-rate --attention-dropout dropout-rate --activation-dropout dropout-rate \
--optimizer adam --adam-betas '(0.9, 0.98)' --adam-eps 1e-6 --weight-decay 0.1 --clip-norm 0.0 \
--lr 0.002 --lr-scheduler inverse_sqrt --warmup-updates 3000 --warmup-init-lr 1e-07 \
--max-sentences ar-batch-size \
--fp16 \
--max-update iterations \
--seed 2 \
--log-format json --log-interval 10000000 --no-epoch-checkpoints --no-last-checkpoints \
--save-dir path-to-model

path-to-dumped-codes: path to the dumped codes of VQ-VAE model (fasten training process)
dropout-rate: dropout rate
latent-size: latent code length
codebook-size: codebook size
name-of-dataset: mnist / cifar10 / celeba
path-to-dataset: path to the roots of dataset
path-to-model: path to save checkpoints
ar-batch-size: batch size of autorregressive model
iterations: training iterations

Anytime sampling (Inference):

python3 generate.py --n-samples number-of-samples --out-path paht-to-img \
--tokens-per-sample latent-size --vocab-size codebook-size --tokens-per-target code-num \
--ar-checkpoint path-to-ar --ar-batch-size batch-size

number-of-samples: number of samples to be generated
path-to-img: path to the generated samples
latent-size: latent code length
codebook-size: codebook size
code-num: number of codes used to generated (Anytime sampling!)
path-to-ar: path to the Transformer checkpoint in Step 3
batch-size: batch size for Transforer

Citation

@inproceedings{
xu2021anytime,
title={Anytime Sampling for Autoregressive Models via Ordered Autoencoding},
author={Yilun Xu and Yang Song and Sahaj Garg and Linyuan Gong and Rui Shu and Aditya Grover and Stefano Ermon},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=TSRTzJnuEBS}
}
Owner
Yilun Xu
Yilun Xu
Contour-guided image completion with perceptual grouping (BMVC 2021 publication)

Contour-guided Image Completion with Perceptual Grouping Authors Morteza Rezanejad*, Sidharth Gupta*, Chandra Gummaluru, Ryan Marten, John Wilder, Mic

Sid Gupta 6 Dec 27, 2022
Code and models for ICCV2021 paper "Robust Object Detection via Instance-Level Temporal Cycle Confusion".

Robust Object Detection via Instance-Level Temporal Cycle Confusion This repo contains the implementation of the ICCV 2021 paper, Robust Object Detect

Xin Wang 69 Oct 13, 2022
[CVPR 2022] Deep Equilibrium Optical Flow Estimation

Deep Equilibrium Optical Flow Estimation This is the official repo for the paper Deep Equilibrium Optical Flow Estimation (CVPR 2022), by Shaojie Bai*

CMU Locus Lab 136 Dec 18, 2022
[CVPR 2021] MiVOS - Mask Propagation module. Reproduced STM (and better) with training code :star2:. Semi-supervised video object segmentation evaluation.

MiVOS (CVPR 2021) - Mask Propagation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] [Papers with Code] This repo impleme

Rex Cheng 106 Jan 03, 2023
Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Mingrui Yu 3 Jan 07, 2022
2021 CCF BDCI 全国信息检索挑战杯(CCIR-Cup)智能人机交互自然语言理解赛道第二名参赛解决方案

2021 CCF BDCI 全国信息检索挑战杯(CCIR-Cup) 智能人机交互自然语言理解赛道第二名解决方案 比赛网址: CCIR-Cup-智能人机交互自然语言理解 1.依赖环境: python==3.8 torch==1.7.1+cu110 numpy==1.19.2 transformers=

JinXiang 22 Oct 29, 2022
GANmouflage: 3D Object Nondetection with Texture Fields

GANmouflage: 3D Object Nondetection with Texture Fields Rui Guo1 Jasmine Collins

29 Aug 10, 2022
This repository contains code for the paper "Decoupling Representation and Classifier for Long-Tailed Recognition", published at ICLR 2020

Classifier-Balancing This repository contains code for the paper: Decoupling Representation and Classifier for Long-Tailed Recognition Bingyi Kang, Sa

Facebook Research 820 Dec 26, 2022
Self-supervised learning on Graph Representation Learning (node-level task)

graph_SSL Self-supervised learning on Graph Representation Learning (node-level task) How to run the code To run GRACE, sh run_GRACE.sh To run GCA, sh

Namkyeong Lee 3 Dec 31, 2021
A tiny, pedagogical neural network library with a pytorch-like API.

candl A tiny, pedagogical implementation of a neural network library with a pytorch-like API. The primary use of this library is for education. Use th

Sri Pranav 3 May 23, 2022
Pairwise learning neural link prediction for ogb link prediction

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
Misc YOLOL scripts for use in the Starbase space sandbox videogame

starbase-misc Misc YOLOL scripts for use in the Starbase space sandbox videogame. Each directory contains standalone YOLOL scripts. They don't really

4 Oct 17, 2021
Nvidia Semantic Segmentation monorepo

Paper | YouTube | Cityscapes Score Pytorch implementation of our paper Hierarchical Multi-Scale Attention for Semantic Segmentation. Please refer to t

NVIDIA Corporation 1.6k Jan 04, 2023
Deep Q Learning with OpenAI Gym and Pokemon Showdown

pokemon-deep-learning An openAI gym project for pokemon involving deep q learning. Made by myself, Sam Little, and Layton Webber. This code captures g

2 Dec 22, 2021
DRIFT is a tool for Diachronic Analysis of Scientific Literature.

About DRIFT is a tool for Diachronic Analysis of Scientific Literature. The application offers user-friendly and customizable utilities for two modes:

Rajaswa Patil 108 Dec 12, 2022
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
Make your own game in a font!

Project structure. Included is a suite of tools to create font games. Tutorial: For a quick tutorial about how to make your own game go here For devel

Michael Mulet 125 Dec 04, 2022
Generic Event Boundary Detection: A Benchmark for Event Segmentation

Generic Event Boundary Detection: A Benchmark for Event Segmentation We release our data annotation & baseline codes for detecting generic event bound

47 Nov 22, 2022
Compositional Sketch Search

Compositional Sketch Search Official repository for ICIP 2021 Paper: Compositional Sketch Search Requirements Install and activate conda environment c

Alexander Black 8 Sep 06, 2021
A novel benchmark dataset for Monocular Layout prediction

AutoLay AutoLay: Benchmarking Monocular Layout Estimation Kaustubh Mani, N. Sai Shankar, J. Krishna Murthy, and K. Madhava Krishna Abstract In this pa

Kaustubh Mani 39 Apr 26, 2022