Code for ICLR 2021 Paper, "Anytime Sampling for Autoregressive Models via Ordered Autoencoding"

Overview

Anytime Autoregressive Model

Anytime Sampling for Autoregressive Models via Ordered Autoencoding , ICLR 21

​ Yilun Xu, Yang Song, Sahaj Gara, Linyuan Gong, Rui Shu, Aditya Grover, Stefano Ermon

A new family of autoregressive model that enables anytime sampling​! 😃

Experiment 1: Image generation

Training:

  • Step 1: Pretrain VQ-VAE with full code length:
python vqvae.py --hidden-size latent-size --k codebook-size --dataset name-of-dataset --data-folder paht-to-dataset  --out-path path-to-model --pretrain

latent-size: latent code length
codebook-size: codebook size
name-of-dataset: mnist / cifar10 / celeba
path-to-dataset: path to the roots of dataset
path-to-model: path to save checkpoints
  • Step 2: Train ordered VQ-VAE:
python vqvae.py --hidden-size latent-size --k codebook-size --dataset name-of-dataset --data-folder paht-to-dataset  --out-path path-to-model --restore-checkpoint path-to-checkpoint --lr learning-rate

latent-size: latent code length
codebook-size: codebook size
name-of-dataset: mnist / cifar10 / celeba
path-to-dataset: path to the roots of dataset
path-to-model: path to save checkpoints
path-to-checkpoint: the path of the best checkpoint in Step 1
learning-rate: learning rate (recommended:1e-3)

  • Step 3: Train autoregressive model
python train_ar.py --task integer_sequence_modeling \
path-to-dumped-codes --vocab-size codebook-size --tokens-per-sample latent-size \
--ae-dataset name-of-dataset --ae-data-path path to the roots of dataset --ae-checkpoint path-to-checkpoint --ae-batch-size 512 \
--arch transformer_lm --dropout dropout-rate --attention-dropout dropout-rate --activation-dropout dropout-rate \
--optimizer adam --adam-betas '(0.9, 0.98)' --adam-eps 1e-6 --weight-decay 0.1 --clip-norm 0.0 \
--lr 0.002 --lr-scheduler inverse_sqrt --warmup-updates 3000 --warmup-init-lr 1e-07 \
--max-sentences ar-batch-size \
--fp16 \
--max-update iterations \
--seed 2 \
--log-format json --log-interval 10000000 --no-epoch-checkpoints --no-last-checkpoints \
--save-dir path-to-model

path-to-dumped-codes: path to the dumped codes of VQ-VAE model (fasten training process)
dropout-rate: dropout rate
latent-size: latent code length
codebook-size: codebook size
name-of-dataset: mnist / cifar10 / celeba
path-to-dataset: path to the roots of dataset
path-to-model: path to save checkpoints
path-to-checkpoint: the path of the best checkpoint in Step 2
ar-batch-size: batch size of autorregressive model
iterations: training iterations

Anytime sampling (Inference):

python3 generate.py --n-samples number-of-samples --out-path paht-to-img \
--tokens-per-sample latent-size --vocab-size codebook-size --tokens-per-target code-num \
--ae-checkpoint path-to-ae --ae-batch-size 512 \
--ar-checkpoint path-to-ar --ar-batch-size batch-size
(--ae_celeba --ae_mnist)
number-of-samples: number of samples to be generated
path-to-img: path to the generated samples
latent-size: latent code length
codebook-size: codebook size
code-num: number of codes used to generated (Anytime sampling!)
path-to-ae: path to the VQ-VAE checkpoint in Step 2
path-to-ar: path to the Transformer checkpoint in Step 3
batch-size: batch size for Transforer
ae_celeba: store_true for generating CelebA
ae_mnist: store_true for generating mnist

Experiment 2: Audio Generation

Firstly cd audio-wave/src.

Training:

  • Step 1: Pretrain VQ-VAE with full code length:
python3 main.py -ex ../configuration/experimens_wave_vq_whole_bigger.jason
  • Step 2: Train ordered VQ-VAE:
python3 main.py -ex ../configuration/experimens_wave_vq_whole_bigger_u.json
  • Step 3: Training Transformerr models:

    • A more step: dump the codebook by: (Will merge this step in future version)
    python3 main.py -ex ../configuration/experimens_wave_vq_whole_bigger_u.json --dump
python train_ar.py --task integer_sequence_modeling \
path-to-dumped-codes --vocab-size codebook-size --tokens-per-sample latent-size \
--arch transformer_lm --dropout dropout-rate --attention-dropout dropout-rate --activation-dropout dropout-rate \
--optimizer adam --adam-betas '(0.9, 0.98)' --adam-eps 1e-6 --weight-decay 0.1 --clip-norm 0.0 \
--lr 0.002 --lr-scheduler inverse_sqrt --warmup-updates 3000 --warmup-init-lr 1e-07 \
--max-sentences ar-batch-size \
--fp16 \
--max-update iterations \
--seed 2 \
--log-format json --log-interval 10000000 --no-epoch-checkpoints --no-last-checkpoints \
--save-dir path-to-model

path-to-dumped-codes: path to the dumped codes of VQ-VAE model (fasten training process)
dropout-rate: dropout rate
latent-size: latent code length
codebook-size: codebook size
name-of-dataset: mnist / cifar10 / celeba
path-to-dataset: path to the roots of dataset
path-to-model: path to save checkpoints
ar-batch-size: batch size of autorregressive model
iterations: training iterations

Anytime sampling (Inference):

python3 generate.py --n-samples number-of-samples --out-path paht-to-img \
--tokens-per-sample latent-size --vocab-size codebook-size --tokens-per-target code-num \
--ar-checkpoint path-to-ar --ar-batch-size batch-size

number-of-samples: number of samples to be generated
path-to-img: path to the generated samples
latent-size: latent code length
codebook-size: codebook size
code-num: number of codes used to generated (Anytime sampling!)
path-to-ar: path to the Transformer checkpoint in Step 3
batch-size: batch size for Transforer

Citation

@inproceedings{
xu2021anytime,
title={Anytime Sampling for Autoregressive Models via Ordered Autoencoding},
author={Yilun Xu and Yang Song and Sahaj Garg and Linyuan Gong and Rui Shu and Aditya Grover and Stefano Ermon},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=TSRTzJnuEBS}
}
Owner
Yilun Xu
Yilun Xu
Neural Architecture Search Powered by Swarm Intelligence 🐜

Neural Architecture Search Powered by Swarm Intelligence 🐜 DeepSwarm DeepSwarm is an open-source library which uses Ant Colony Optimization to tackle

288 Oct 28, 2022
Code for Mesh Convolution Using a Learned Kernel Basis

Mesh Convolution This repository contains the implementation (in PyTorch) of the paper FULLY CONVOLUTIONAL MESH AUTOENCODER USING EFFICIENT SPATIALLY

Yi_Zhou 35 Jan 03, 2023
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
Open-source code for Generic Grouping Network (GGN, CVPR 2022)

Open-World Instance Segmentation: Exploiting Pseudo Ground Truth From Learned Pairwise Affinity Pytorch implementation for "Open-World Instance Segmen

Meta Research 99 Dec 06, 2022
A Joint Video and Image Encoder for End-to-End Retrieval

Frozen️ in Time ❄️ ️️️️ ⏳ A Joint Video and Image Encoder for End-to-End Retrieval project page | arXiv | webvid-data Repository containing the code,

225 Dec 25, 2022
🗺 General purpose U-Network implemented in Keras for image segmentation

TF-Unet General purpose U-Network implemented in Keras for image segmentation Getting started • Training • Evaluation Getting started Looking for Jupy

Or Fleisher 2 Aug 31, 2022
Angle data is a simple data type.

angledat Angle data is a simple data type. Installing + using Put angledat.py in the main dir of your project. Import it and use. Comments Comments st

1 Jan 05, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Master Docs License Apache MXNet (incubating) is a deep learning framework designed for both efficiency an

ROCm Software Platform 29 Nov 16, 2022
Swapping face using Face Mesh with TensorFlow Lite

Swapping face using Face Mesh with TensorFlow Lite

iwatake 17 Apr 26, 2022
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2

Microsoft 29 Dec 29, 2022
The code for our paper CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention.

CrossFormer This repository is the code for our paper CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention. Introduction Existin

cheerss 238 Jan 06, 2023
PyTorch implementation of paper: AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer, ICCV 2021.

AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer [Paper] [PyTorch Implementation] [Paddle Implementation] Overview This reposit

148 Dec 30, 2022
Dogs classification with Deep Metric Learning using some popular losses

Tsinghua Dogs classification with Deep Metric Learning 1. Introduction Tsinghua Dogs dataset Tsinghua Dogs is a fine-grained classification dataset fo

QuocThangNguyen 45 Nov 09, 2022
Code for IntraQ, PyTorch implementation of our paper under review

IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper Requirements Python = 3.7.10 Pytorch == 1.7

1 Nov 19, 2021
Privacy-Preserving Portrait Matting [ACM MM-21]

Privacy-Preserving Portrait Matting [ACM MM-21] This is the official repository of the paper Privacy-Preserving Portrait Matting. Jizhizi Li∗, Sihan M

Jizhizi_Li 212 Dec 27, 2022
General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends)

General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabled, asynchronous and optimized for advanced GPU data processing usec

The Kompute Project 1k Jan 06, 2023
Fast, accurate and reliable software for algebraic CT reconstruction

KCT CBCT Fast, accurate and reliable software for algebraic CT reconstruction. This set of software tools includes OpenCL implementation of modern CT

Vojtěch Kulvait 4 Dec 14, 2022
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022
This is an official implementation of the paper "Distance-aware Quantization", accepted to ICCV2021.

PyTorch implementation of DAQ This is an official implementation of the paper "Distance-aware Quantization", accepted to ICCV2021. For more informatio

CV Lab @ Yonsei University 36 Nov 04, 2022
ROS support for Velodyne 3D LIDARs

Overview Velodyne1 is a collection of ROS2 packages supporting Velodyne high definition 3D LIDARs3. Warning: The master branch normally contains code

ROS device drivers 543 Dec 30, 2022