Code for ICLR 2021 Paper, "Anytime Sampling for Autoregressive Models via Ordered Autoencoding"

Overview

Anytime Autoregressive Model

Anytime Sampling for Autoregressive Models via Ordered Autoencoding , ICLR 21

​ Yilun Xu, Yang Song, Sahaj Gara, Linyuan Gong, Rui Shu, Aditya Grover, Stefano Ermon

A new family of autoregressive model that enables anytime sampling​! 😃

Experiment 1: Image generation

Training:

  • Step 1: Pretrain VQ-VAE with full code length:
python vqvae.py --hidden-size latent-size --k codebook-size --dataset name-of-dataset --data-folder paht-to-dataset  --out-path path-to-model --pretrain

latent-size: latent code length
codebook-size: codebook size
name-of-dataset: mnist / cifar10 / celeba
path-to-dataset: path to the roots of dataset
path-to-model: path to save checkpoints
  • Step 2: Train ordered VQ-VAE:
python vqvae.py --hidden-size latent-size --k codebook-size --dataset name-of-dataset --data-folder paht-to-dataset  --out-path path-to-model --restore-checkpoint path-to-checkpoint --lr learning-rate

latent-size: latent code length
codebook-size: codebook size
name-of-dataset: mnist / cifar10 / celeba
path-to-dataset: path to the roots of dataset
path-to-model: path to save checkpoints
path-to-checkpoint: the path of the best checkpoint in Step 1
learning-rate: learning rate (recommended:1e-3)

  • Step 3: Train autoregressive model
python train_ar.py --task integer_sequence_modeling \
path-to-dumped-codes --vocab-size codebook-size --tokens-per-sample latent-size \
--ae-dataset name-of-dataset --ae-data-path path to the roots of dataset --ae-checkpoint path-to-checkpoint --ae-batch-size 512 \
--arch transformer_lm --dropout dropout-rate --attention-dropout dropout-rate --activation-dropout dropout-rate \
--optimizer adam --adam-betas '(0.9, 0.98)' --adam-eps 1e-6 --weight-decay 0.1 --clip-norm 0.0 \
--lr 0.002 --lr-scheduler inverse_sqrt --warmup-updates 3000 --warmup-init-lr 1e-07 \
--max-sentences ar-batch-size \
--fp16 \
--max-update iterations \
--seed 2 \
--log-format json --log-interval 10000000 --no-epoch-checkpoints --no-last-checkpoints \
--save-dir path-to-model

path-to-dumped-codes: path to the dumped codes of VQ-VAE model (fasten training process)
dropout-rate: dropout rate
latent-size: latent code length
codebook-size: codebook size
name-of-dataset: mnist / cifar10 / celeba
path-to-dataset: path to the roots of dataset
path-to-model: path to save checkpoints
path-to-checkpoint: the path of the best checkpoint in Step 2
ar-batch-size: batch size of autorregressive model
iterations: training iterations

Anytime sampling (Inference):

python3 generate.py --n-samples number-of-samples --out-path paht-to-img \
--tokens-per-sample latent-size --vocab-size codebook-size --tokens-per-target code-num \
--ae-checkpoint path-to-ae --ae-batch-size 512 \
--ar-checkpoint path-to-ar --ar-batch-size batch-size
(--ae_celeba --ae_mnist)
number-of-samples: number of samples to be generated
path-to-img: path to the generated samples
latent-size: latent code length
codebook-size: codebook size
code-num: number of codes used to generated (Anytime sampling!)
path-to-ae: path to the VQ-VAE checkpoint in Step 2
path-to-ar: path to the Transformer checkpoint in Step 3
batch-size: batch size for Transforer
ae_celeba: store_true for generating CelebA
ae_mnist: store_true for generating mnist

Experiment 2: Audio Generation

Firstly cd audio-wave/src.

Training:

  • Step 1: Pretrain VQ-VAE with full code length:
python3 main.py -ex ../configuration/experimens_wave_vq_whole_bigger.jason
  • Step 2: Train ordered VQ-VAE:
python3 main.py -ex ../configuration/experimens_wave_vq_whole_bigger_u.json
  • Step 3: Training Transformerr models:

    • A more step: dump the codebook by: (Will merge this step in future version)
    python3 main.py -ex ../configuration/experimens_wave_vq_whole_bigger_u.json --dump
python train_ar.py --task integer_sequence_modeling \
path-to-dumped-codes --vocab-size codebook-size --tokens-per-sample latent-size \
--arch transformer_lm --dropout dropout-rate --attention-dropout dropout-rate --activation-dropout dropout-rate \
--optimizer adam --adam-betas '(0.9, 0.98)' --adam-eps 1e-6 --weight-decay 0.1 --clip-norm 0.0 \
--lr 0.002 --lr-scheduler inverse_sqrt --warmup-updates 3000 --warmup-init-lr 1e-07 \
--max-sentences ar-batch-size \
--fp16 \
--max-update iterations \
--seed 2 \
--log-format json --log-interval 10000000 --no-epoch-checkpoints --no-last-checkpoints \
--save-dir path-to-model

path-to-dumped-codes: path to the dumped codes of VQ-VAE model (fasten training process)
dropout-rate: dropout rate
latent-size: latent code length
codebook-size: codebook size
name-of-dataset: mnist / cifar10 / celeba
path-to-dataset: path to the roots of dataset
path-to-model: path to save checkpoints
ar-batch-size: batch size of autorregressive model
iterations: training iterations

Anytime sampling (Inference):

python3 generate.py --n-samples number-of-samples --out-path paht-to-img \
--tokens-per-sample latent-size --vocab-size codebook-size --tokens-per-target code-num \
--ar-checkpoint path-to-ar --ar-batch-size batch-size

number-of-samples: number of samples to be generated
path-to-img: path to the generated samples
latent-size: latent code length
codebook-size: codebook size
code-num: number of codes used to generated (Anytime sampling!)
path-to-ar: path to the Transformer checkpoint in Step 3
batch-size: batch size for Transforer

Citation

@inproceedings{
xu2021anytime,
title={Anytime Sampling for Autoregressive Models via Ordered Autoencoding},
author={Yilun Xu and Yang Song and Sahaj Garg and Linyuan Gong and Rui Shu and Aditya Grover and Stefano Ermon},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=TSRTzJnuEBS}
}
Owner
Yilun Xu
Yilun Xu
Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV

Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV File YOLOv3 weight can be downloaded

Ngoc Quyen Ngo 2 Mar 27, 2022
StyleMapGAN - Official PyTorch Implementation

StyleMapGAN - Official PyTorch Implementation StyleMapGAN: Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing Hyunsu Kim, Yunj

NAVER AI 425 Dec 23, 2022
Differentiable Neural Computers, Sparse Access Memory and Sparse Differentiable Neural Computers, for Pytorch

Differentiable Neural Computers and family, for Pytorch Includes: Differentiable Neural Computers (DNC) Sparse Access Memory (SAM) Sparse Differentiab

ixaxaar 302 Dec 14, 2022
Official implementation of VQ-Diffusion

Vector Quantized Diffusion Model for Text-to-Image Synthesis Overview This is the official repo for the paper: [Vector Quantized Diffusion Model for T

Microsoft 592 Jan 03, 2023
UFPR-ADMR-v2 Dataset

UFPR-ADMR-v2 Dataset The UFPR-ADMRv2 dataset contains 5,000 dial meter images obtained on-site by employees of the Energy Company of Paraná (Copel), w

Gabriel Salomon 8 Sep 29, 2022
Baseline and template code for node21 detection track

Nodule Detection Algorithm This codebase implements a baseline model, Faster R-CNN, for the nodule detection track in NODE21. It contains all necessar

node21challenge 11 Jan 15, 2022
A state-of-the-art semi-supervised method for image recognition

Mean teachers are better role models Paper ---- NIPS 2017 poster ---- NIPS 2017 spotlight slides ---- Blog post By Antti Tarvainen, Harri Valpola (The

Curious AI 1.4k Jan 06, 2023
Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd.

Head Detector Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd. The head_detection mod

Ramana Sundararaman 76 Dec 06, 2022
[CVPR 2021] "Multimodal Motion Prediction with Stacked Transformers": official code implementation and project page.

mmTransformer Introduction This repo is official implementation for mmTransformer in pytorch. Currently, the core code of mmTransformer is implemented

DeciForce: Crossroads of Machine Perception and Autonomy 232 Dec 31, 2022
This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning

This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning It includes /bert, which is the original BERT repos

Mitchell Gordon 11 Nov 15, 2022
ISTR: End-to-End Instance Segmentation with Transformers (https://arxiv.org/abs/2105.00637)

This is the project page for the paper: ISTR: End-to-End Instance Segmentation via Transformers, Jie Hu, Liujuan Cao, Yao Lu, ShengChuan Zhang, Yan Wa

Jie Hu 182 Dec 19, 2022
PyTorch implementation of Histogram Layers from DeepHist: Differentiable Joint and Color Histogram Layers for Image-to-Image Translation

deep-hist PyTorch implementation of Histogram Layers from DeepHist: Differentiable Joint and Color Histogram Layers for Image-to-Image Translation PyT

Winfried Lötzsch 10 Dec 06, 2022
RID-Noise: Towards Robust Inverse Design under Noisy Environments

This is code of RID-Noise. Reproduce RID-Noise Results Toy tasks Please refer to the notebook ridnoise.ipynb to view experiments on three toy tasks. B

Thyrix 2 Nov 23, 2022
HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022

HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022 [Project page | Video] Getting sta

51 Nov 29, 2022
DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment

DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment This repository is related to the paper DEEPAGÉ: Answering Questions in Por

0 Dec 10, 2021
Affine / perspective transformation in Pose Estimation with Tensorflow 2

Pose Transformation Affine / Perspective transformation in Pose Estimation with Tensorflow 2 Introduction 이 repo는 pose estimation을 연구하고 개발하는 데 도움이 되기

Kim Junho 1 Dec 22, 2021
[NeurIPS2021] Code Release of K-Net: Towards Unified Image Segmentation

K-Net: Towards Unified Image Segmentation Introduction This is an official release of the paper K-Net:Towards Unified Image Segmentation. K-Net will a

Wenwei Zhang 423 Jan 02, 2023
A geometric deep learning pipeline for predicting protein interface contacts.

A geometric deep learning pipeline for predicting protein interface contacts.

44 Dec 30, 2022
🧮 Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model after All

Accompanying source code to the paper "Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model A

Florian Wilhelm 39 Dec 03, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation Ported from https://github.com/hzwer/arXiv2020-RIFE Dependencies NumPy

49 Jan 07, 2023