PyTorch implementation of ENet

Overview

PyTorch-ENet

PyTorch (v1.1.0) implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, ported from the lua-torch implementation ENet-training created by the authors.

This implementation has been tested on the CamVid and Cityscapes datasets. Currently, a pre-trained version of the model trained in CamVid and Cityscapes is available here.

Dataset Classes 1 Input resolution Batch size Epochs Mean IoU (%) GPU memory (GiB) Training time (hours)2
CamVid 11 480x360 10 300 52.13 4.2 1
Cityscapes 19 1024x512 4 300 59.54 5.4 20

1 When referring to the number of classes, the void/unlabeled class is always excluded.
2 These are just for reference. Implementation, datasets, and hardware changes can lead to very different results. Reference hardware: Nvidia GTX 1070 and an AMD Ryzen 5 3600 3.6GHz. You can also train for 100 epochs or so and get similar mean IoU (± 2%).
3 Test set.
4 Validation set.

Installation

Local pip

  1. Python 3 and pip
  2. Set up a virtual environment (optional, but recommended)
  3. Install dependencies using pip: pip install -r requirements.txt

Docker image

  1. Build the image: docker build -t enet .
  2. Run: docker run -it --gpus all --ipc host enet

Usage

Run main.py, the main script file used for training and/or testing the model. The following options are supported:

python main.py [-h] [--mode {train,test,full}] [--resume]
               [--batch-size BATCH_SIZE] [--epochs EPOCHS]
               [--learning-rate LEARNING_RATE] [--lr-decay LR_DECAY]
               [--lr-decay-epochs LR_DECAY_EPOCHS]
               [--weight-decay WEIGHT_DECAY] [--dataset {camvid,cityscapes}]
               [--dataset-dir DATASET_DIR] [--height HEIGHT] [--width WIDTH]
               [--weighing {enet,mfb,none}] [--with-unlabeled]
               [--workers WORKERS] [--print-step] [--imshow-batch]
               [--device DEVICE] [--name NAME] [--save-dir SAVE_DIR]

For help on the optional arguments run: python main.py -h

Examples: Training

python main.py -m train --save-dir save/folder/ --name model_name --dataset name --dataset-dir path/root_directory/

Examples: Resuming training

python main.py -m train --resume True --save-dir save/folder/ --name model_name --dataset name --dataset-dir path/root_directory/

Examples: Testing

python main.py -m test --save-dir save/folder/ --name model_name --dataset name --dataset-dir path/root_directory/

Project structure

Folders

  • data: Contains instructions on how to download the datasets and the code that handles data loading.
  • metric: Evaluation-related metrics.
  • models: ENet model definition.
  • save: By default, main.py will save models in this folder. The pre-trained models can also be found here.

Files

  • args.py: Contains all command-line options.
  • main.py: Main script file used for training and/or testing the model.
  • test.py: Defines the Test class which is responsible for testing the model.
  • train.py: Defines the Train class which is responsible for training the model.
  • transforms.py: Defines image transformations to convert an RGB image encoding classes to a torch.LongTensor and vice versa.
Owner
David Silva
:eyes:🚗
David Silva
Data Augmentation Using Keras and Python

Data-Augmentation-Using-Keras-and-Python Data augmentation is the process of increasing the number of training dataset. Keras library offers a simple

Happy N. Monday 3 Feb 15, 2022
A Partition Filter Network for Joint Entity and Relation Extraction EMNLP 2021

EMNLP 2021 - A Partition Filter Network for Joint Entity and Relation Extraction

zhy 127 Jan 04, 2023
Code for unmixing audio signals in four different stems "drums, bass, vocals, others". The code is adapted from "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Disclaimer This code is a based on "Jukebox: A Generative Model for Music" Paper We adju

Wadhah Zai El Amri 24 Dec 29, 2022
PyTorch Implementation for "ForkGAN with SIngle Rainy NIght Images: Leveraging the RumiGAN to See into the Rainy Night"

ForkGAN with Single Rainy Night Images: Leveraging the RumiGAN to See into the Rainy Night By Seri Lee, Department of Engineering, Seoul National Univ

Seri Lee 52 Oct 12, 2022
Quantized tflite models for ailia TFLite Runtime

ailia-models-tflite Quantized tflite models for ailia TFLite Runtime About ailia TFLite Runtime ailia TF Lite Runtime is a TensorFlow Lite compatible

ax Inc. 13 Dec 23, 2022
Ranger - a synergistic optimizer using RAdam (Rectified Adam), Gradient Centralization and LookAhead in one codebase

Ranger-Deep-Learning-Optimizer Ranger - a synergistic optimizer combining RAdam (Rectified Adam) and LookAhead, and now GC (gradient centralization) i

Less Wright 1.1k Dec 21, 2022
🏖 Keras Implementation of Painting outside the box

Keras implementation of Image OutPainting This is an implementation of Painting Outside the Box: Image Outpainting paper from Standford University. So

Bendang 1.1k Dec 10, 2022
A Haskell kernel for IPython.

IHaskell You can now try IHaskell directly in your browser at CoCalc or mybinder.org. Alternatively, watch a talk and demo showing off IHaskell featur

Andrew Gibiansky 2.4k Dec 29, 2022
A Light CNN for Deep Face Representation with Noisy Labels

A Light CNN for Deep Face Representation with Noisy Labels Citation If you use our models, please cite the following paper: @article{wulight, title=

Alfred Xiang Wu 715 Nov 05, 2022
Automatically download the cwru data set, and then divide it into training data set and test data set

Automatically download the cwru data set, and then divide it into training data set and test data set.自动下载cwru数据集,然后分训练数据集和测试数据集

6 Jun 27, 2022
[NeurIPS 2021]: Are Transformers More Robust Than CNNs? (Pytorch implementation & checkpoints)

Are Transformers More Robust Than CNNs? Pytorch implementation for NeurIPS 2021 Paper: Are Transformers More Robust Than CNNs? Our implementation is b

Yutong Bai 145 Dec 01, 2022
Official PyTorch implementation of RIO

Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection Figure 1: Our proposed Resampling at image-level and obect-

NVIDIA Research Projects 17 May 20, 2022
X-modaler is a versatile and high-performance codebase for cross-modal analytics.

X-modaler X-modaler is a versatile and high-performance codebase for cross-modal analytics. This codebase unifies comprehensive high-quality modules i

910 Dec 28, 2022
Deep learning library for solving differential equations and more

DeepXDE Voting on whether we should have a Slack channel for discussion. DeepXDE is a library for scientific machine learning. Use DeepXDE if you need

Lu Lu 1.4k Dec 29, 2022
Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper]

Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper] Downloads [Downloads] Trained ckpt files for NYU Depth V2 and

98 Jan 01, 2023
Implementing yolov4 target detection and tracking based on nao robot

Implementing yolov4 target detection and tracking based on nao robot

6 Apr 19, 2022
Minimal But Practical Image Classifier Pipline Using Pytorch, Finetune on ResNet18, Got 99% Accuracy on Own Small Datasets.

PyTorch Image Classifier Updates As for many users request, I released a new version of standared pytorch immage classification example at here: http:

JinTian 106 Nov 06, 2022
The repo of Feedback Networks, CVPR17

Feedback Networks http://feedbacknet.stanford.edu/ Paper: Feedback Networks, CVPR 2017. Amir R. Zamir*,Te-Lin Wu*, Lin Sun, William B. Shen, Bertram E

Stanford Vision and Learning Lab 87 Nov 19, 2022
Source code for the ACL-IJCNLP 2021 paper entitled "T-DNA: Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation" by Shizhe Diao et al.

T-DNA Source code for the ACL-IJCNLP 2021 paper entitled Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adapta

shizhediao 17 Dec 22, 2022
Easily Process a Batch of Cox Models

ezcox: Easily Process a Batch of Cox Models The goal of ezcox is to operate a batch of univariate or multivariate Cox models and return tidy result. ⏬

Shixiang Wang 15 May 23, 2022