The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Related tags

Deep LearningPIRender
Overview

Website | ArXiv | Get Start | Video

PIRenderer

The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering" (ICCV2021)

The proposed PIRenderer can synthesis portrait images by intuitively controlling the face motions with fully disentangled 3DMM parameters. This model can be applied to tasks such as:

  • Intuitive Portrait Image Editing

    Intuitive Portrait Image Control

    Pose & Expression Alignment

  • Motion Imitation

    Same & Corss-identity Reenactment

  • Audio-Driven Facial Reenactment

    Audio-Driven Reenactment

News

  • 2021.9.20 Code for PyTorch is available!

Colab Demo

Coming soon

Get Start

1). Installation

Requirements

  • Python 3
  • PyTorch 1.7.1
  • CUDA 10.2

Conda Installation

# 1. Create a conda virtual environment.
conda create -n PIRenderer python=3.6
conda activate PIRenderer
conda install -c pytorch pytorch=1.7.1 torchvision cudatoolkit=10.2

# 2. Install other dependencies
pip install -r requirements.txt

2). Dataset

We train our model using the VoxCeleb. You can download the demo dataset for inference or prepare the dataset for training and testing.

Download the demo dataset

The demo dataset contains all 514 test videos. You can download the dataset with the following code:

./scripts/download_demo_dataset.sh

Or you can choose to download the resources with these links:

Google Driven & BaiDu Driven with extraction passwords ”p9ab“

Then unzip and save the files to ./dataset

Prepare the dataset

  1. The dataset is preprocessed follow the method used in First-Order. You can follow the instructions in their repo to download and crop videos for training and testing.

  2. After obtaining the VoxCeleb videos, we extract 3DMM parameters using Deep3DFaceReconstruction.

    The folder are with format as:

    ${DATASET_ROOT_FOLDER}
    └───path_to_videos
    		└───train
    				└───xxx.mp4
    				└───xxx.mp4
    				...
    		└───test
    				└───xxx.mp4
    				└───xxx.mp4
    				...
    └───path_to_3dmm_coeff
    		└───train
    				└───xxx.mat
    				└───xxx.mat
    				...
    		└───test
    				└───xxx.mat
    				└───xxx.mat
    				...
    
  3. We save the video and 3DMM parameters in a lmdb file. Please run the following code to do this

    python scripts/prepare_vox_lmdb.py \
    --path path_to_videos \
    --coeff_3dmm_path path_to_3dmm_coeff \
    --out path_to_output_dir

3). Training and Inference

Inference

The trained weights can be downloaded by running the following code:

./scripts/download_weights.sh

Or you can choose to download the resources with these links: coming soon. Then save the files to ./result/face

Reenactment

Run the the demo for face reenactment:

python -m torch.distributed.launch --nproc_per_node=1 --master_port 12345 inference.py \
--config ./config/face.yaml \
--name face \
--no_resume \
--output_dir ./vox_result/face_reenactment

The output results are saved at ./vox_result/face_reenactment

Intuitive Control

coming soon

Train

Our model can be trained with the following code

python -m torch.distributed.launch --nproc_per_node=4 --master_port 12345 train.py \
--config ./config/face.yaml \
--name face

Citation

If you find this code is helpful, please cite our paper

@misc{ren2021pirenderer,
      title={PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering}, 
      author={Yurui Ren and Ge Li and Yuanqi Chen and Thomas H. Li and Shan Liu},
      year={2021},
      eprint={2109.08379},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgement

We build our project base on imaginaire. Some dataset preprocessing methods are derived from video-preprocessing.

Owner
Ren Yurui
Ren Yurui
ThunderSVM: A Fast SVM Library on GPUs and CPUs

What's new We have recently released ThunderGBM, a fast GBDT and Random Forest library on GPUs. add scikit-learn interface, see here Overview The miss

Xtra Computing Group 1.4k Dec 22, 2022
This is the code for the paper "Motion-Focused Contrastive Learning of Video Representations" (ICCV'21).

Motion-Focused Contrastive Learning of Video Representations Introduction This is the code for the paper "Motion-Focused Contrastive Learning of Video

11 Sep 23, 2022
MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

Facebook Research 338 Dec 29, 2022
Exploring Simple Siamese Representation Learning

G-SimSiam A PyTorch implementation which refers to repo for the paper Exploring Simple Siamese Representation Learning by Xinlei Chen & Kaiming He Add

zhuyun 1 Dec 19, 2021
PyTorch implementation of "Transparency by Design: Closing the Gap Between Performance and Interpretability in Visual Reasoning"

Transparency-by-Design networks (TbD-nets) This repository contains code for replicating the experiments and visualizations from the paper Transparenc

David Mascharka 351 Nov 18, 2022
NER for Indian languages

CL-NERIL: A Cross-Lingual Model for NER in Indian Languages Code for the paper - https://arxiv.org/abs/2111.11815 Setup Setup a virtual environment Th

Akshara P 0 Nov 24, 2021
The pytorch implementation of DG-Font: Deformable Generative Networks for Unsupervised Font Generation

DG-Font: Deformable Generative Networks for Unsupervised Font Generation The source code for 'DG-Font: Deformable Generative Networks for Unsupervised

130 Dec 05, 2022
Source code for "OmniPhotos: Casual 360° VR Photography"

OmniPhotos: Casual 360° VR Photography Project Page | Video | Paper | Demo | Data This repository contains the source code for creating and viewing Om

Christian Richardt 144 Dec 30, 2022
A free, multiplatform SDK for real-time facial motion capture using blendshapes, and rigid head pose in 3D space from any RGB camera, photo, or video.

mocap4face by Facemoji mocap4face by Facemoji is a free, multiplatform SDK for real-time facial motion capture based on Facial Action Coding System or

Facemoji 591 Dec 27, 2022
Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples

Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples This repository is the official implementation of paper [Qimera: Data-free Q

Kanghyun Choi 21 Nov 03, 2022
Music Generation using Neural Networks Streamlit App

Music_Gen_Streamlit "Music Generation using Neural Networks" Streamlit App TO DO: Make a run_app.sh Introduction [~5 min] (Sohaib) Team Member names/i

Muhammad Sohaib Arshid 6 Aug 09, 2022
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
In this project we predict the forest cover type using the cartographic variables in the training/test datasets.

Kaggle Competition: Forest Cover Type Prediction In this project we predict the forest cover type (the predominant kind of tree cover) using the carto

Marianne Joy Leano 1 Mar 15, 2022
Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach

Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach This is the implementation of traffic prediction code in DTMP based on PyTo

chenxin 1 Dec 19, 2021
PyTorch implementation of probabilistic deep forecast applied to air quality.

Probabilistic Deep Forecast PyTorch implementation of a paper, titled: Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting

Abdulmajid Murad 13 Nov 16, 2022
Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning

Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning This is the official repository for Conservative and Adaptive Penalty fo

7 Nov 22, 2022
PyTorch inference for "Progressive Growing of GANs" with CelebA snapshot

Progressive Growing of GANs inference in PyTorch with CelebA training snapshot Description This is an inference sample written in PyTorch of the origi

320 Nov 21, 2022
D-NeRF: Neural Radiance Fields for Dynamic Scenes

D-NeRF: Neural Radiance Fields for Dynamic Scenes [Project] [Paper] D-NeRF is a method for synthesizing novel views, at an arbitrary point in time, of

Albert Pumarola 291 Jan 02, 2023
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: "NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion". NÜWA is a unified multimodal

Microsoft 2.6k Jan 03, 2023
Python with OpenCV - MediaPip Framework Hand Detection

Python HandDetection Python with OpenCV - MediaPip Framework Hand Detection Explore the docs » Contact Me About The Project It is a Computer vision pa

2 Jan 07, 2022