DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021)

Overview

Evaluation, Training, Demo, and Inference of DeFMO

DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021)

Denys Rozumnyi, Martin R. Oswald, Vittorio Ferrari, Jiri Matas, Marc Pollefeys

Qualitative results: https://www.youtube.com/watch?v=pmAynZvaaQ4

Pre-trained models

The pre-trained DeFMO model as reported in the paper is available here: https://polybox.ethz.ch/index.php/s/M06QR8jHog9GAcF. Put them into ./saved_models sub-folder.

Inference

For generating video temporal super-resolution:

python run.py --video example/falling_pen.avi

For generating temporal super-resolution of a single frame with the given background:

python run.py --im example/im.png --bgr example/bgr.png

Evaluation

After downloading the pre-trained models and downloading the evaluation datasets, you can run

python eval_dataset.py

Synthetic dataset generation

For the dataset generation, please download:

Then, insert your paths in renderer/settings.py file. To generate the dataset, run in renderer sub-folder:

python run_render.py

Note that the full training dataset with 50 object categories, 1000 objects per category, and 24 timestamps takes up to 1 TB of storage memory. Due to this and also the ShapeNet licence, we cannot make the pre-generated dataset public - please generate it by yourself using the steps above.

Training

Set up all paths in main_settings.py and run

python train.py

Evaluation on real-world datasets

All evaluation datasets can be found at http://cmp.felk.cvut.cz/fmo/. We provide a download_datasets.sh script to download the Falling Objects, the TbD-3D, and the TbD datasets.

Reference

If you use this repository, please cite the following publication ( https://arxiv.org/abs/2012.00595 ):

@inproceedings{defmo,
  author = {Denys Rozumnyi and Martin R. Oswald and Vittorio Ferrari and Jiri Matas and Marc Pollefeys},
  title = {DeFMO: Deblurring and Shape Recovery of Fast Moving Objects},
  booktitle = {CVPR},
  address = {Nashville, Tennessee, USA},
  month = jun,
  year = {2021}
}
Comments
  • Question about training set

    Question about training set

    Hi, thanks for your generous sharing.

    I have a question about training set generating in your work. I generated a training set following your codes. Its size is about 100GB, far less than 1TB. Is there anything wrong?

    Thanks.

    opened by fan-hd 11
  • Apply your model on custom longer video clips

    Apply your model on custom longer video clips

    Hi thank you for releasing your code,

    Can your model be applied on custom videos about high speed train crossing? Video clips last from 3 to 10 seconds, my idea was to preprocess them with your code in order to keep the same frame rate and have a better video quality for later object detection. This is an example frame from original video clip:

    vlcsnap-2021-05-25-15h27m32s030

    I tried to run your code on a video about 6 seconds and the result was a longer video (about 13min) with a lower level of detail, probably I'm doing something wrong. This is an example frame from output video clip:

    vlcsnap-2021-05-25-15h26m22s237

    How can I correctly reconstruct the quality of single frames usin all the information contained in the video?

    opened by fabiozappo 4
  • Question about comparison with Jin et al.'s work (CVPR2018)

    Question about comparison with Jin et al.'s work (CVPR2018)

    Hi, thank you for your interesting work! I have a question about the comparison of methods in your work. When making comparisons, did you retrain Jin et al.'s model ("Learning to Extract a Video Sequence from a Single Motion-Blurred Image" from CVPR 2018), or did you just use their pre-trained checkpoints? I couldn't find the training code on their github page.

    opened by zzh-tech 2
  • Padding in Time-Consistency Loss

    Padding in Time-Consistency Loss

    Hi,

    Congratulations!

    I found that "padding = tuple(side // 10 for side in sh[:2]) + (0,)" for normalized cross-correlation. Does it only implement padding to the height axis, since the padding tuple will be of size (4//10, H//10, 0)?

    Thanks a lot.

    opened by JLiu-Edinburgh 1
  • run on google colab!

    run on google colab!

    I'm confused! and need to run the code on google colab or more explanation about how to implement that code in vscode or something else .if it know someone please help me

    opened by ganikas 3
Releases(v1.0)
Owner
Denys Rozumnyi
PhD student at ETH Zurich.
Denys Rozumnyi
Deep Multi-Magnification Network for multi-class tissue segmentation of whole slide images

Deep Multi-Magnification Network This repository provides training and inference codes for Deep Multi-Magnification Network published here. Deep Multi

Computational Pathology 12 Aug 06, 2022
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
A PyTorch Implementation of SphereFace.

SphereFace A PyTorch Implementation of SphereFace. The code can be trained on CASIA-Webface and the best accuracy on LFW is 99.22%. SphereFace: Deep H

carwin 685 Dec 09, 2022
All public open-source implementations of convnets benchmarks

convnet-benchmarks Easy benchmarking of all public open-source implementations of convnets. A summary is provided in the section below. Machine: 6-cor

Soumith Chintala 2.7k Dec 30, 2022
LQM - Improving Object Detection by Estimating Bounding Box Quality Accurately

Improving Object Detection by Estimating Bounding Box Quality Accurately Abstract Object detection aims to locate and classify object instances in ima

IM Lab., POSTECH 0 Sep 28, 2022
Implementation of "JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting"

JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting Pytorch implementation for the paper "JOKR: Joint Keypoint Repres

45 Dec 25, 2022
The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding"

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
PConv-Keras - Unofficial implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions". Try at: www.fixmyphoto.ai

Partial Convolutions for Image Inpainting using Keras Keras implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions", https

Mathias Gruber 871 Jan 05, 2023
The official implementation of ICCV paper "Box-Aware Feature Enhancement for Single Object Tracking on Point Clouds".

Box-Aware Tracker (BAT) Pytorch-Lightning implementation of the Box-Aware Tracker. Box-Aware Feature Enhancement for Single Object Tracking on Point C

Kangel Zenn 5 Mar 26, 2022
PyTorch-Multi-Style-Transfer - Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 906 Jan 04, 2023
PyTorch implementation of "Continual Learning with Deep Generative Replay", NIPS 2017

pytorch-deep-generative-replay PyTorch implementation of Continual Learning with Deep Generative Replay, NIPS 2017 Results Continual Learning on Permu

Junsoo Ha 127 Dec 14, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
A Convolutional Transformer for Keyword Spotting

☢️ Audiomer ☢️ Audiomer: A Convolutional Transformer for Keyword Spotting [ arXiv ] [ Previous SOTA ] [ Model Architecture ] Results on SpeechCommands

49 Jan 27, 2022
Run object detection model on the Raspberry Pi

Using TensorFlow Lite with Python is great for embedded devices based on Linux, such as Raspberry Pi.

Dimitri Yanovsky 6 Oct 08, 2022
(Arxiv 2021) NeRF--: Neural Radiance Fields Without Known Camera Parameters

NeRF--: Neural Radiance Fields Without Known Camera Parameters Project Page | Arxiv | Colab Notebook | Data Zirui Wang¹, Shangzhe Wu², Weidi Xie², Min

Active Vision Laboratory 411 Dec 26, 2022
source code of “Visual Saliency Transformer” (ICCV2021)

Visual Saliency Transformer (VST) source code for our ICCV 2021 paper “Visual Saliency Transformer” by Nian Liu, Ni Zhang, Kaiyuan Wan, Junwei Han, an

89 Dec 21, 2022
Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021)

T2Net Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021) [Paper][Code] Dependencies numpy==1.18.5 scikit_image==

64 Nov 23, 2022
Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech This repository is the official implementation of "Meta-TTS: Meta-Learning for Few

Sung-Feng Huang 128 Dec 25, 2022
This program can detect your face and add an Christams hat on the top of your head

Auto_Christmas This program can detect your face and add a Christmas hat to the top of your head. just run the Auto_Christmas.py, then you can see the

3 Dec 22, 2021
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022