Using VideoBERT to tackle video prediction

Overview

VideoBERT

This repo reproduces the results of VideoBERT (https://arxiv.org/pdf/1904.01766.pdf). Inspiration was taken from https://github.com/MDSKUL/MasterProject, but this repo tackles video prediction rather than captioning and masked language modeling. On a side note, since this model is extremely small, the results that are displayed here are extremely basic. Feel free to increase the model size per your computational resources and change the inference file to include temperature if necessary (As of now I have not implemented temperature). Here are all the steps taken:

Step 1: Download 47k videos from the HowTo100M dataset

Using the HowTo100M dataset https://www.di.ens.fr/willow/research/howto100m/, filter out the cooking videos and download them for feature extraction. The dataset is also used for extracting images for each feature vector. The ids for the videos are contained in the ids.txt file.

Step 2: Do feature extraction with the I3D model

The I3D model is used to extract the features for every 1.5 seconds of video while saving the median image of the 1.5 seconds of video as well. I3D model used: https://tfhub.dev/deepmind/i3d-kinetics-600/1. Note that CUDA should be used to decrease the runtime. Here is the usage for the code to run:

$ python3 VideoBERT/VideoBERT/I3D/batch_extract.py -h
usage: batch_extract.py [-h] -f FILE_LIST_PATH -r ROOT_VIDEO_PATH -s FEATURES_SAVE_PATH -i IMGS_SAVE_PATH

optional arguments:
  -h, --help            show this help message and exit
  -f FILE_LIST_PATH, --file-list-path FILE_LIST_PATH
                        path to file containing video file names
  -r ROOT_VIDEO_PATH, --root-video-path ROOT_VIDEO_PATH
                        root directory containing video files
  -s FEATURES_SAVE_PATH, --features-save-path FEATURES_SAVE_PATH
                        directory in which to save features
  -i IMGS_SAVE_PATH, --imgs-save-path IMGS_SAVE_PATH
                        directory in which to save images

Step 3: Hierarchical Minibatch K-means

To find the centroids for the feature vectors, minibatch k-means is used hierarchically to save time and memory. After this, the nearest feature vector for each centroid is found, and the corresponding image is chosen to represent tht centroid. To use the hierarchical minibatch k-means independently for another project, consider using the python package hkmeans-minibatch, which is also used in this VideoBERT project (https://github.com/ammesatyajit/hierarchical-minibatch-kmeans).

Here is the usage for the kmeans code:

$ python3 VideoBERT/VideoBERT/I3D/minibatch_hkmeans.py -h 
usage: minibatch_hkmeans.py [-h] -r ROOT_FEATURE_PATH -p FEATURES_PREFIX [-b BATCH_SIZE] -s SAVE_DIR -c CENTROID_DIR

optional arguments:
  -h, --help            show this help message and exit
  -r ROOT_FEATURE_PATH, --root-feature_path ROOT_FEATURE_PATH
                        path to folder containing all the video folders with the features
  -p FEATURES_PREFIX, --features-prefix FEATURES_PREFIX
                        prefix that is common between the desired files to read
  -b BATCH_SIZE, --batch-size BATCH_SIZE
                        batch_size to use for the minibatch kmeans
  -s SAVE_DIR, --save-dir SAVE_DIR
                        save directory for hierarchical kmeans vectors
  -c CENTROID_DIR, --centroid-dir CENTROID_DIR
                        directory to save the centroids in

Note that after this step the centroids will need to be concatenated for ease of use.

After doing kmeans, the image representing each centroid needs to be found to display the video during inference.

$ python3 VideoBERT/VideoBERT/data/centroid_to_img.py -h 
usage: centroid_to_img.py [-h] -f ROOT_FEATURES -i ROOT_IMGS -c CENTROID_FILE -s SAVE_FILE

optional arguments:
  -h, --help            show this help message and exit
  -f ROOT_FEATURES, --root-features ROOT_FEATURES
                        path to folder containing all the video folders with the features
  -i ROOT_IMGS, --root-imgs ROOT_IMGS
                        path to folder containing all the video folders with the images corresponding to the features
  -c CENTROID_FILE, --centroid-file CENTROID_FILE
                        the .npy file containing all the centroids
  -s SAVE_FILE, --save-file SAVE_FILE
                        json file to save the centroid to image dictionary in

Step 4: Label and group data

Using the centroids, videos are tokenized and text captions are punctuated. Using the timestamps for each caption, video ids are extracted and paired with the text captions in the training data file. Captions can be found here: https://www.rocq.inria.fr/cluster-willow/amiech/howto100m/.

The python file below tokenizes the videos:

$ python3 VideoBERT/VideoBERT/data/label_data.py -h     
usage: label_data.py [-h] -f ROOT_FEATURES -c CENTROID_FILE -s SAVE_FILE

optional arguments:
  -h, --help            show this help message and exit
  -f ROOT_FEATURES, --root-features ROOT_FEATURES
                        path to folder containing all the video folders with the features
  -c CENTROID_FILE, --centroid-file CENTROID_FILE
                        the .npy file containing all the centroids
  -s SAVE_FILE, --save-file SAVE_FILE
                        json file to save the labelled data to

After that the following file can be run to both punctuate text and group the text with the corresponding video. This uses the Punctuator module, which requires a .pcl model file to punctuate the data.

$ python3 VideoBERT/VideoBERT/data/punctuate_text.py -h 
usage: punctuate_text.py [-h] -c CAPTIONS_PATH -p PUNCTUATOR_MODEL -l LABELLED_DATA -f ROOT_FEATURES -s SAVE_PATH

optional arguments:
  -h, --help            show this help message and exit
  -c CAPTIONS_PATH, --captions-path CAPTIONS_PATH
                        path to filtered captions
  -p PUNCTUATOR_MODEL, --punctuator-model PUNCTUATOR_MODEL
                        path to punctuator .pcl model
  -l LABELLED_DATA, --labelled-data LABELLED_DATA
                        path to labelled data json file
  -f ROOT_FEATURES, --root-features ROOT_FEATURES
                        directory with all the video features
  -s SAVE_PATH, --save-path SAVE_PATH
                        json file to save training data to

If desired, an evaluation data file can be created by splitting the training data file.

Step 5: Training

The training data from before is used to train a next token prediction transformer. The saved model and tokenizer is used for inference in the next step. here is the usage of the train.py file.

$ python3 VideoBERT/VideoBERT/train/train.py -h
usage: train.py [-h] --output_dir OUTPUT_DIR [--should_continue] [--model_name_or_path MODEL_NAME_OR_PATH] [--train_data_path TRAIN_DATA_PATH] [--eval_data_path EVAL_DATA_PATH] [--config_name CONFIG_NAME] [--block_size BLOCK_SIZE]
                [--per_gpu_train_batch_size PER_GPU_TRAIN_BATCH_SIZE] [--gradient_accumulation_steps GRADIENT_ACCUMULATION_STEPS] [--learning_rate LEARNING_RATE] [--weight_decay WEIGHT_DECAY] [--adam_epsilon ADAM_EPSILON]
                [--max_grad_norm MAX_GRAD_NORM] [--num_train_epochs NUM_TRAIN_EPOCHS] [--max_steps MAX_STEPS] [--log_dir LOG_DIR] [--warmup_steps WARMUP_STEPS] [--local_rank LOCAL_RANK] [--logging_steps LOGGING_STEPS]
                [--save_steps SAVE_STEPS] [--save_total_limit SAVE_TOTAL_LIMIT] [--overwrite_output_dir] [--overwrite_cache] [--seed SEED]

optional arguments:
  -h, --help            show this help message and exit
  --output_dir OUTPUT_DIR
                        The output directory where the model predictions and checkpoints will be written.
  --should_continue     Whether to continue from latest checkpoint in output_dir
  --model_name_or_path MODEL_NAME_OR_PATH
                        The model checkpoint for weights initialization. Leave None if you want to train a model from scratch.
  --train_data_path TRAIN_DATA_PATH
                        The json file for training the model
  --eval_data_path EVAL_DATA_PATH
                        The json file for evaluating the model
  --config_name CONFIG_NAME
                        Optional pretrained config name or path if not the same as model_name_or_path. If both are None, initialize a new config.
  --block_size BLOCK_SIZE
                        Optional input sequence length after tokenization.The training dataset will be truncated in block of this size for training.Default to the model max input length for single sentence inputs (take into account
                        special tokens).
  --per_gpu_train_batch_size PER_GPU_TRAIN_BATCH_SIZE
                        Batch size per GPU/CPU for training.
  --gradient_accumulation_steps GRADIENT_ACCUMULATION_STEPS
                        Number of updates steps to accumulate before performing a backward/update pass.
  --learning_rate LEARNING_RATE
                        The initial learning rate for Adam.
  --weight_decay WEIGHT_DECAY
                        Weight decay if we apply some.
  --adam_epsilon ADAM_EPSILON
                        Epsilon for Adam optimizer.
  --max_grad_norm MAX_GRAD_NORM
                        Max gradient norm.
  --num_train_epochs NUM_TRAIN_EPOCHS
                        Total number of training epochs to perform.
  --max_steps MAX_STEPS
                        If > 0: set total number of training steps to perform. Override num_train_epochs.
  --log_dir LOG_DIR     Directory to store the logs.
  --warmup_steps WARMUP_STEPS
                        Linear warmup over warmup_steps.
  --local_rank LOCAL_RANK
                        For distributed training: local_rank
  --logging_steps LOGGING_STEPS
                        Log every X updates steps.
  --save_steps SAVE_STEPS
                        Save checkpoint every X updates steps.
  --save_total_limit SAVE_TOTAL_LIMIT
                        Limit the total amount of checkpoints, delete the older checkpoints in the output_dir, does not delete by default
  --overwrite_output_dir
                        Overwrite the content of the output directory
  --overwrite_cache     Overwrite the cached training and evaluation sets
  --seed SEED           random seed for initialization

Step 6: Inference

Model is used for predicting video sequences and results can be seen visually. Note that since the model does uses vector quantized images as tokens, it only understands the actions and approximate background of the scene, not the exact person or dish. Here are some samples:

out1 out2 out3 out4 out5

Here is the usage for the inference file. Feel free to modify it to suit any specific needs:

$ python3 VideoBERT/VideoBERT/evaluation/inference.py -h 
usage: inference.py [-h] [--model_name_or_path MODEL_NAME_OR_PATH] --output_dir OUTPUT_DIR [--example_id EXAMPLE_ID] [--seed SEED]

optional arguments:
  -h, --help            show this help message and exit
  --model_name_or_path MODEL_NAME_OR_PATH
                        The model checkpoint for weights initialization. Leave None if you want to train a model from scratch.
  --output_dir OUTPUT_DIR
                        The output directory where the checkpoint is.
  --example_id EXAMPLE_ID
                        The index of the eval set for evaluating the model
  --seed SEED           random seed for initialization
Scalable and Elastic Deep Reinforcement Learning Using PyTorch. Please star. 🔥

ElegantRL “小雅”: Scalable and Elastic Deep Reinforcement Learning ElegantRL is developed for researchers and practitioners with the following advantage

AI4Finance Foundation 2.5k Jan 05, 2023
Summary of related papers on visual attention

This repo is built for paper: Attention Mechanisms in Computer Vision: A Survey paper Vision-Attention-Papers Channel attention Spatial attention Temp

MenghaoGuo 2.1k Dec 30, 2022
Repository for the AugmentedPCA Python package.

Overview This Python package provides implementations of Augmented Principal Component Analysis (AugmentedPCA) - a family of linear factor models that

Billy Carson 6 Dec 07, 2022
This repo is the official implementation of "L2ight: Enabling On-Chip Learning for Optical Neural Networks via Efficient in-situ Subspace Optimization".

L2ight is a closed-loop ONN on-chip learning framework to enable scalable ONN mapping and efficient in-situ learning. L2ight adopts a three-stage learning flow that first calibrates the complicated p

Jiaqi Gu 9 Jul 14, 2022
Official Repo for Ground-aware Monocular 3D Object Detection for Autonomous Driving

Visual 3D Detection Package: This repo aims to provide flexible and reproducible visual 3D detection on KITTI dataset. We expect scripts starting from

Yuxuan Liu 305 Dec 19, 2022
sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

445 Jan 02, 2023
Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

DALL-E in Pytorch Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch. It will also contain CLIP for ranking the ge

Phil Wang 5k Jan 04, 2023
Winners of the Facebook Image Similarity Challenge

Winners of the Facebook Image Similarity Challenge

DrivenData 111 Jan 05, 2023
Garbage Detection system which will detect objects based on whether it is plastic waste or plastics or just garbage.

Garbage Detection using Yolov5 on Jetson Nano 2gb Developer Kit. Garbage detection system which will detect objects based on whether it is plastic was

Rishikesh A. Bondade 2 May 13, 2022
Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localization and Semantic Segmentation (CVPR 2022)

CCAM (Unsupervised) Code repository for our paper "CCAM: Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localizati

Computer Vision Insitute, SZU 113 Dec 27, 2022
[PyTorch] Official implementation of CVPR2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency". https://arxiv.org/abs/2103.05465

PointDSC repository PyTorch implementation of PointDSC for CVPR'2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency",

153 Dec 14, 2022
Mini-hmc-jax - A simple implementation of Hamiltonian Monte Carlo in JAX

mini-hmc-jax This is a simple implementation of Hamiltonian Monte Carlo in JAX t

Martin Marek 6 Mar 03, 2022
Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021

ACTOR Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021. Please visit our we

Mathis Petrovich 248 Dec 23, 2022
Tracking Pipeline helps you to solve the tracking problem more easily

Tracking_Pipeline Tracking_Pipeline helps you to solve the tracking problem more easily I integrate detection algorithms like: Yolov5, Yolov4, YoloX,

VNOpenAI 32 Dec 21, 2022
This repository contains the code for "SBEVNet: End-to-End Deep Stereo Layout Estimation" paper by Divam Gupta, Wei Pu, Trenton Tabor, Jeff Schneider

SBEVNet: End-to-End Deep Stereo Layout Estimation This repository contains the code for "SBEVNet: End-to-End Deep Stereo Layout Estimation" paper by D

Divam Gupta 19 Dec 17, 2022
Graph Convolutional Networks in PyTorch

Graph Convolutional Networks in PyTorch PyTorch implementation of Graph Convolutional Networks (GCNs) for semi-supervised classification [1]. For a hi

Thomas Kipf 4.5k Dec 31, 2022
Dcf-game-infrastructure-public - Contains all the components necessary to run a DC finals (attack-defense CTF) game from OOO

dcf-game-infrastructure All the components necessary to run a game of the OOO DC

Order of the Overflow 46 Sep 13, 2022
Implemented fully documented Particle Swarm Optimization algorithm (basic model with few advanced features) using Python programming language

Implemented fully documented Particle Swarm Optimization (PSO) algorithm in Python which includes a basic model along with few advanced features such as updating inertia weight, cognitive, social lea

9 Nov 29, 2022
Source code for paper "Deep Diffusion Models for Robust Channel Estimation", TBA.

diffusion-channels Source code for paper "Deep Diffusion Models for Robust Channel Estimation". Generic flow: Use 'matlab/main.mat' to generate traini

The University of Texas Computational Sensing and Imaging Lab 15 Dec 22, 2022