A memory-efficient implementation of DenseNets

Overview

efficient_densenet_pytorch

A PyTorch >=1.0 implementation of DenseNets, optimized to save GPU memory.

Recent updates

  1. Now works on PyTorch 1.0! It uses the checkpointing feature, which makes this code WAY more efficient!!!

Motivation

While DenseNets are fairly easy to implement in deep learning frameworks, most implmementations (such as the original) tend to be memory-hungry. In particular, the number of intermediate feature maps generated by batch normalization and concatenation operations grows quadratically with network depth. It is worth emphasizing that this is not a property inherent to DenseNets, but rather to the implementation.

This implementation uses a new strategy to reduce the memory consumption of DenseNets. We use checkpointing to compute the Batch Norm and concatenation feature maps. These intermediate feature maps are discarded during the forward pass and recomputed for the backward pass. This adds 15-20% of time overhead for training, but reduces feature map consumption from quadratic to linear.

This implementation is inspired by this technical report, which outlines a strategy for efficient DenseNets via memory sharing.

Requirements

  • PyTorch >=1.0.0
  • CUDA

Usage

In your existing project: There is one file in the models folder.

If you care about speed, and memory is not an option, pass the efficient=False argument into the DenseNet constructor. Otherwise, pass in efficient=True.

Options:

  • All options are described in the docstrings of the model files
  • The depth is controlled by block_config option
  • efficient=True uses the memory-efficient version
  • If you want to use the model for ImageNet, set small_inputs=False. For CIFAR or SVHN, set small_inputs=True.

Running the demo:

The only extra package you need to install is python-fire:

pip install fire
  • Single GPU:
CUDA_VISIBLE_DEVICES=0 python demo.py --efficient True --data <path_to_folder_with_cifar10> --save <path_to_save_dir>
  • Multiple GPU:
CUDA_VISIBLE_DEVICES=0,1,2 python demo.py --efficient True --data <path_to_folder_with_cifar10> --save <path_to_save_dir>

Options:

  • --depth (int) - depth of the network (number of convolution layers) (default 40)
  • --growth_rate (int) - number of features added per DenseNet layer (default 12)
  • --n_epochs (int) - number of epochs for training (default 300)
  • --batch_size (int) - size of minibatch (default 256)
  • --seed (int) - manually set the random seed (default None)

Performance

A comparison of the two implementations (each is a DenseNet-BC with 100 layers, batch size 64, tested on a NVIDIA Pascal Titan-X):

Implementation Memory cosumption (GB/GPU) Speed (sec/mini batch)
Naive 2.863 0.165
Efficient 1.605 0.207
Efficient (multi-GPU) 0.985 -

Other efficient implementations

Reference

@article{pleiss2017memory,
  title={Memory-Efficient Implementation of DenseNets},
  author={Pleiss, Geoff and Chen, Danlu and Huang, Gao and Li, Tongcheng and van der Maaten, Laurens and Weinberger, Kilian Q},
  journal={arXiv preprint arXiv:1707.06990},
  year={2017}
}
Owner
Geoff Pleiss
Geoff Pleiss
HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021)

Code for HDR Video Reconstruction HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021) Guanying Chen, Cha

Guanying Chen 64 Nov 19, 2022
R3Det based on mmdet 2.19.0

R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object Installation # install mmdetection first if you haven't installed it

SJTU-Thinklab-Det 38 Dec 15, 2022
Official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

peng gao 42 Nov 26, 2022
An implementation of based on pytorch and mmcv

FisherPruning-Pytorch An implementation of Group Fisher Pruning for Practical Network Compression based on pytorch and mmcv Main Functions Pruning f

Peng Lu 15 Dec 17, 2022
TRACER: Extreme Attention Guided Salient Object Tracing Network implementation in PyTorch

TRACER: Extreme Attention Guided Salient Object Tracing Network This paper was accepted at AAAI 2022 SA poster session. Datasets All datasets are avai

Karel 118 Dec 29, 2022
Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentation"

Hyper-Convolution Networks for Biomedical Image Segmentation Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentatio

Tianyu Ma 17 Nov 02, 2022
mmfewshot is an open source few shot learning toolbox based on PyTorch

OpenMMLab FewShot Learning Toolbox and Benchmark

OpenMMLab 514 Dec 28, 2022
A Python package for time series augmentation

tsaug tsaug is a Python package for time series augmentation. It offers a set of augmentation methods for time series, as well as a simple API to conn

Arundo Analytics 278 Jan 01, 2023
Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning.

xTune Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning. Environment DockerFile: dancingsoul/pytorch:xTune Install the f

Bo Zheng 42 Dec 09, 2022
🤗 Push your spaCy pipelines to the Hugging Face Hub

spacy-huggingface-hub: Push your spaCy pipelines to the Hugging Face Hub This package provides a CLI command for uploading any trained spaCy pipeline

Explosion 30 Oct 09, 2022
Semantic segmentation models, datasets and losses implemented in PyTorch.

Semantic Segmentation in PyTorch Semantic Segmentation in PyTorch Requirements Main Features Models Datasets Losses Learning rate schedulers Data augm

Yassine 1.3k Jan 07, 2023
HairCLIP: Design Your Hair by Text and Reference Image

Overview This repository hosts the official PyTorch implementation of the paper: "HairCLIP: Design Your Hair by Text and Reference Image". Our single

322 Jan 06, 2023
This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge.

Data-Science-Intern-Challenge This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge. Summer 2022 Data Science Inte

1 Jan 11, 2022
Classifies galaxy morphology with Bayesian CNN

Zoobot Zoobot classifies galaxy morphology with deep learning. This code will let you: Reproduce and improve the Galaxy Zoo DECaLS automated classific

Mike Walmsley 39 Dec 20, 2022
Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning And private Server services

Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning

MaCan 4.2k Dec 29, 2022
Artificial intelligence technology inferring issues and logically supporting facts from raw text

개요 비정형 텍스트를 학습하여 쟁점별 사실과 논리적 근거 추론이 가능한 인공지능 원천기술 Artificial intelligence techno

6 Dec 29, 2021
Simple reference implementation of GraphSAGE.

Reference PyTorch GraphSAGE Implementation Author: William L. Hamilton Basic reference PyTorch implementation of GraphSAGE. This reference implementat

William L Hamilton 861 Jan 06, 2023
Search and filter videos based on objects that appear in them using convolutional neural networks

Thingscoop: Utility for searching and filtering videos based on their content Description Thingscoop is a command-line utility for analyzing videos se

Anastasis Germanidis 354 Dec 04, 2022
[ICCV 2021] Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation

EPCDepth EPCDepth is a self-supervised monocular depth estimation model, whose supervision is coming from the other image in a stereo pair. Details ar

Rui Peng 110 Dec 23, 2022
Deep Text Search is an AI-powered multilingual text search and recommendation engine with state-of-the-art transformer-based multilingual text embedding (50+ languages).

Deep Text Search - AI Based Text Search & Recommendation System Deep Text Search is an AI-powered multilingual text search and recommendation engine w

19 Sep 29, 2022