A map update dataset and benchmark

Related tags

Deep Learningmuno21
Overview

MUNO21

MUNO21 is a dataset and benchmark for machine learning methods that automatically update and maintain digital street map datasets. Previous datasets focus on road extraction, and measure how well a method can infer a road network from aerial or satellite imagery. In contrast, MUNO21 measures how well a method can modify the road network data in an existing digital map dataset to make it reflect the latest physical road network visible from imagery. This task is more practical, since it doesn't throw away the existing map, but also more challenging, as physical roads may be constructed, bulldozed, or otherwise modified.

For more details, see https://favyen.com/muno21/.

This repository contains the code that was used to create MUNO21, as well as code for working with the dataset and computing evaluation metrics.

Requirements

Compiler and application requirements include the following. The versions are what we use and older versions make work as well.

  • Go 1.16+ (with older versions, module-aware mode must be enabled)
  • Python 3.5
  • osmium-tool 2.16.0 (only needed for dataset pre-processing)
  • ImageMagick 6.8 (only needed for dataset pre-processing)

Python requirements are in requirements.txt, and can be installed with:

pip install -r requirements.txt

These requirements should be sufficient to run dataset pre-processing, automatic candidate generation and clustering, visualization, metric evaluation, and post-processing with removing G_extra and fusing new roads into the base map.

To run the included map update methods, a range of additional requirements are needed, depending on the particular method:

  • TensorFlow 1.15 (not 2.0)
  • pytorch 1.7
  • scipy 1.4
  • OpenCV
  • rdp

Dataset

Obtaining the Dataset

Download and extract the MUNO21 dataset:

wget https://favyen.com/files/muno21.zip
unzip muno21.zip

In the commands below, we may assume that you have placed the dataset in /data/:

mv mapupdate/ /data/

The dataset includes aerial image and road network data in large tiles around several cities, along with annotations that specify the map update scenarios. Some steps below will require road network data to be extracted in windows corresponding to the scenarios:

cd muno21/go/
mkdir /data/identity
export PYTHONPATH=../python/
python ../methods/identity/run.py /data/graphs/graphs/ /data/annotations.json /data/identity/

Data Format

Aerial imagery is available as JPEG images in the naip/jpg/ folder. These images are obtained from NAIP.

Road networks are available as .graph files in the graphs/graphs folder. See https://favyen.com/muno21/graph-format.txt for a description of the data format of these files. Note that, in contrast to some other datasets, road networks are NOT represented as images -- instead, they are undirected spatial networks, where vertices are labeled with (x,y) coordinates and edges correspond to road segments. The (x,y) coordinates indicate pixels in the corresponding JPEG image.

Note that two versions of the road network are available in this format.

  • {region_x_y_time}.graph: only includes public roads suitable for motor vehicles.
  • {region_x_y_time}_all.graph: includes most other "ways" that appear in OpenStreetMap.

The original OpenStreetMap data is available in the graphs/osm/ folder, in files encoded under the OSM PBF format. Methods may take advantage of the additional information in these files, such as various road attributes. To convert longitude-latitude coordinates to pixel coordinates, see go/lib/regions.go and go/preprocess/osm_to_graph.go.

Task

The MUNO21 dataset includes 1,294 map update scenarios. Each scenario specifies a pre-change timestamp, post-change timestamp, and a bounding box window where some change occurred.

The input is aerial imagery from each of four years, along with road network data from a specific pre-change year (usually 2012 or 2013).

The ground truth label is the road network from a specific post-change year (usually 2018 or 2019) inside the bounding box window.

During training, a method may use all aerial imagery and road network data from the training regions (see train.json). To facilitate self-supervised learning, methods may also use all aerial imagery in the test regions (see test.json), but only road network data from 2012 or 2013 in those regions.

During inference, for a given scenario, a method has access to the same data that is available during training. It additionally has access to road network data from all regions at the pre-change timestamp, although since this is usually 2012 or 2013, this usually does not actually provide any more data.

The method should output a road network corresponding to the physical roads visible in the aerial imagery at the post-change timestamp inside the bounding box window.

Metrics

Methods are compared in terms of their precision-recall curves.

Recall measures how much closer the output road networks are to the ground truth data (post-change road network) than the pre-change road networks. Two alternative ways of comparing road networks, PixelF1 and APLS, are used.

Precision measures how frequently a method makes incorrect modifications to the road network in scenarios where no change has occurred between the pre- and post-change timestamps.

A method may expose a single real-valued parameter that provides a tradeoff between precision and recall. For example, a method that infers road networks using image segmentation may expose the segmentation probability confidence threshold for the "road" class as a parameter -- increasing this threshold generally provides higher precision but lower recall. Methods are compared in terms of their precision-recall curves when varying this parameter.

Scenario Specification

Scenarios are specified in the annotations.json file. Let annotation refer to one annotation JSON object.

Each scenario specifies a spatial window in pixel coordinates where the map has changed: annotation['Cluster']['Window']. A method may use imagery and road network data outside that window, but its output road network should span that window plus 128-pixel padding; it will be evaluated only inside the window (with no padding), but the padding ensures that the evaluation metrics are computed correctly along the boundary of the window.

Currently, the pre-change timestamp is always 2013, and the post-change timestamp is always the year of the most recent aerial image (either 2018 or 2019).

Infer Road Networks

Refer to the documentation in methods/{classify,recurrentunet,road_connectivity,roadtracerpp,sat2graph}.

Each method besides classify is taken from a publicly available implementation (see README in each method directory.) We make minor changes to make them work with MUNO21. We also find many bugs in road_connectivity which we have to manually fix, and we adapt Sat2Graph to work with Python3. road_connectivity and recurrentunet will only work with Python 2.7.

Post-process Inferred Road Networks

Applying a method to infer road networks should yield a directory containing subdirectories (corresponding to different confidence thresholds) that each contain .graph files. Most methods require post-processing under our map fusion approach before evaluation.

Suppose that you have computed the outputs of MAiD in /data/maid/out/. Then, for each confidence threshold:

mkdir /data/maid/fuse/
mkdir /data/maid/fuse/10/
go run postprocess/fuse.go /data/annotations.json normal /data/identity/ /data/maid/out/10/ /data/maid/fuse/10/

Optionally, visualize an inferred road network. Below, 6 can be changed to any annotation index corresponding to /data/annotations.json.

go run vis/visualize_inferred.go /data/annotations.json 6 /data/naip/jpg/ /data/graphs/graphs/ /data/maid/fuse/10/ default ./

The command above should produce an image ./6.jpg.

Evaluation

For each confidence threshold, run e.g.:

python metrics/apls.py /data/annotations.json /data/maid/fuse/10/ /data/graphs/graphs/ /data/test.json
go run metrics/geo.go /data/annotations.json /data/maid/fuse/10/ /data/graphs/graphs/ /data/test.json

Above, the first command computes APLS (which takes a long time to run) while the second computes PixelF1 (aka GEO metric). These commands produce scores.json and geo.json files respectively in the /data/maid/fuse/10/ directory containing metric outputs for each test scenario.

To obtain error rate:

go run metrics/error_rate.go /data/annotations.json /data/maid/fuse/10/ /data/graphs/graphs/ /data/test.json

To produce a precision-recall curve from the scores across multiple confidence thresholds, run:

python metrics/score_details.py /data/annotations.json /data/maid/fuse/{10,20,30,40,50}/geo.json

Building the Dataset

The documentation below outlines how the dataset was built. You do not need to follow these steps unless you are trying to replicate the dataset from raw NAIP aerial images from Google EarthEngine and OpenStreetMap history dumps.

Dataset Pre-processing

We preprocess raw NAIP and OSM data using the code in go/preprocess.

  1. Obtain NAIP images from Google EarthEngine.
  2. Obtain us-internal.osh.pbf from https://download.geofabrik.de/north-america/us.html
  3. Extract history around individual cities: go run preprocess/osm_space_filter.go /data/graphs/big/us-internal.osh.pbf /data/graphs/history/
  4. Extract OSM dumps at different times: python3 preprocess/osm_time_filter.py /data/graphs/history/ /data/graphs/osm/
  5. Convert NAIP images to JPG: python3 preprocess/tif_to_jpg.py /data/naip/tif/ /data/naip/jpg/
  6. Record the NAIP image sizes (needed for coordinate transforms and such): python3 preprocess/save_image_sizes.py /data/naip/jpg/ /data/sizes.json
  7. Convert to MUNO21 .graph file format: go run preprocess/osm_to_graph.go /data/graphs/osm/ /data/graphs/graphs/
  8. Randomly split the cities into train/test: python3 preprocess/pick_train_test.py /data/graphs/history/ /data/
  9. (Optional) Visualize the graph and image extracted at a tile: python3 vis/vis.py /data/naip/jpg/ny_1_0_2019.jpg /data/graphs/graphs/ny_1_0_2018-07-01.graph out.jpg

Candidate Generation and Clustering

We then generate and cluster candidates.

  1. Candidate generation: go run annotate/find_changed_roads.go /data/graphs/graphs/ /data/changes/
  2. Clustering: go run annotate/cluster_changes.go /data/changes/ /data/cluster/
  3. No-change windows: go run annotate/find_nochange.go /data/graphs/graphs/ /data/cluster-nochange/
  4. Output visualizations for annotation: go run annotate/visualize_clusters.go /data/cluster/ /data/naip/jpg/ /data/graphs/graphs/ /data/vis/

Annotation Post-processing

After using the annotation tools like go/annotate, we process the output annotations into JSON file:

  1. Convert annotation data to JSON: go run process_annotations.go /data/cluster/ /data/annotations.txt /data/cluster-nochange/ /data/annotations.json
An excellent hash algorithm combining classical sponge structure and RNN.

SHA-RNN Recurrent Neural Network with Chaotic System for Hash Functions Anonymous Authors [摘要] 在这次作业中我们提出了一种新的 Hash Function —— SHA-RNN。其以海绵结构为基础,融合了混

Houde Qian 5 May 15, 2022
git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Commonsense Knowledge Base Completion with Structural and Semantic Context Code for the paper Commonsense Knowledge Base Completion with Structural an

AI2 96 Nov 05, 2022
A machine learning benchmark of in-the-wild distribution shifts, with data loaders, evaluators, and default models.

WILDS is a benchmark of in-the-wild distribution shifts spanning diverse data modalities and applications, from tumor identification to wildlife monitoring to poverty mapping.

P-Lambda 437 Dec 30, 2022
[AAAI 2022] Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation with Limited Annotation

A paper Introduction This is an official release of the paper Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation wit

Jiacheng Wang 14 Dec 08, 2022
Semantically Contrastive Learning for Low-light Image Enhancement

Semantically Contrastive Learning for Low-light Image Enhancement Here, we propose an effective semantically contrastive learning paradigm for Low-lig

48 Dec 16, 2022
A Small and Easy approach to the BraTS2020 dataset (2D Segmentation)

BraTS2020 A Light & Scalable Solution to BraTS2020 | Medical Brain Tumor Segmentation (2D Segmentation) Developed the segmentation models for segregat

Gunjan Haldar 0 Jan 19, 2022
TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification

TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification [NeurIPS 2021] Abstract Multiple instance learn

132 Dec 30, 2022
Contains code for Deep Kernelized Dense Geometric Matching

DKM - Deep Kernelized Dense Geometric Matching Contains code for Deep Kernelized Dense Geometric Matching We provide pretrained models and code for ev

Johan Edstedt 83 Dec 23, 2022
This repo is a C++ version of yolov5_deepsort_tensorrt. Packing all C++ programs into .so files, using Python script to call C++ programs further.

yolov5_deepsort_tensorrt_cpp Introduction This repo is a C++ version of yolov5_deepsort_tensorrt. And packing all C++ programs into .so files, using P

41 Dec 27, 2022
Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. CVPR 2018

Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning Tensorflow code and models for the paper: Large Scale Fine-Grained Categ

Yin Cui 187 Oct 01, 2022
Code for "3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop"

PyMAF This repository contains the code for the following paper: 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop Hongwe

Hongwen Zhang 450 Dec 28, 2022
Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available for research purposes.

Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available f

Yongrui Chen 5 Nov 10, 2022
PyTorch implementation of a collections of scalable Video Transformer Benchmarks.

PyTorch implementation of Video Transformer Benchmarks This repository is mainly built upon Pytorch and Pytorch-Lightning. We wish to maintain a colle

Xin Ma 156 Jan 08, 2023
Human-Pose-and-Motion History

Human Pose and Motion Scientist Approach Eadweard Muybridge, The Galloping Horse Portfolio, 1887 Etienne-Jules Marey, Descent of Inclined Plane, Chron

Daito Manabe 47 Dec 16, 2022
Fully Convolutional Refined Auto Encoding Generative Adversarial Networks for 3D Multi Object Scenes

Fully Convolutional Refined Auto-Encoding Generative Adversarial Networks for 3D Multi Object Scenes This repository contains the source code for Full

Yu Nishimura 106 Nov 21, 2022
TANL: Structured Prediction as Translation between Augmented Natural Languages

TANL: Structured Prediction as Translation between Augmented Natural Languages Code for the paper "Structured Prediction as Translation between Augmen

98 Dec 15, 2022
SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches

SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches [Paper]  [Project Page]  [Interactive Demo]  [Supplementary Material]        Usag

215 Dec 25, 2022
AugLiChem - The augmentation library for chemical systems.

AugLiChem Welcome to AugLiChem! The augmentation library for chemical systems. This package supports augmentation for both crystaline and molecular sy

BaratiLab 17 Jan 08, 2023
"Segmenter: Transformer for Semantic Segmentation" reproduced via mmsegmentation

Segmenter-based-on-OpenMMLab "Segmenter: Transformer for Semantic Segmentation, arxiv 2105.05633." reproduced via mmsegmentation. We reproduce Segment

EricKani 22 Feb 24, 2022