Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Overview

Efficient Nearest Neighbor Language Models

This is implementation of the paper:

Efficient Nearest Neighbor Language Models
Junxian He, Graham Neubig, Taylor Berg-Kirkpatrick
EMNLP 2021

This repo implements several techniques to speed up the evaluation of non-parametric, nearest neighbor language models. Specifically, we improve the efficiency along three axes: adaptive retrieval, datastore prunning, and dimension reduction.

Install Dependencies

This repository is largly based on the knnlm repo which is a fork of Fairseq (commit da544b). Please use the exact commit page to determine software requirements for using this code.

git clone [email protected]:jxhe/efficient-knnlm.git

cd efficient-knnlm
pip install --editable .
pip install faiss

Hardware

Experiments for this paper were conducted on machines that contain 32 CPUs, 100GB of RAM, and one NVIDIA 3090 24GB GPU. Saving the Wikitext-103 datastore requires 200GB of disk space. Note that the number of CPUs has a great impact on the speed.

Running Efficient kNNLM

Preparation

Data

We share Fairseq's instructions on how to prepare the data here.

mkdir -p datasets/wikitext-103
cp examples/language_model/wikitext-103/prepare-wikitext-103.sh datasets/wikitext-103

cd datasets/wikitext-103
bash prepare-wikitext-103.sh
cd ../..

TEXT=datasets/wikitext-103
python preprocess.py \
    --only-source \
    --trainpref $TEXT/wiki.train.tokens \
    --validpref $TEXT/wiki.valid.tokens \
    --testpref $TEXT/wiki.test.tokens \
    --destdir data-bin/wikitext-103 \
    --workers 20

Download the language model checkpoint pretrained on WikiText-103

# the model checkpoint link is from the knnlm repo
wget https://nlp.stanford.edu/projects/knnlm/wt103_checkpoint_best.pt -P knnlm_ckpt

Save the datastore

mkdir -p dstore

python eval_lm.py data-bin/wikitext-103 \
    --path knnlm_ckpt/checkpoint_best.pt \
    --sample-break-mode none --max-tokens 3072 \
    --softmax-batch 1024 --gen-subset train \
    --context-window 1536 --tokens-per-sample 1536 \
    --dstore-mmap dstore/dstore --knn-keytype 'last_ffn_input' \
    --dstore-size 103225485 --model-overrides "{'knn_keytype': 'last_ffn_input'}" \
    --save-knnlm-dstore --fp16 --dstore-fp16

Dimension Reduction

# the script applies PCA of dimension 512 by default 
# the PCA hyperparameter can be tuned in this script
# set pca=0 to revert back to the vanilla version
bash ef_knnlm/build_faiss.sh

The faiss index is saved into dstore. Try it out:

bash ef_knnlm/utils_cmd/eval_knnlm.sh \
    -d wikitext-103 \
    -s valid \
    -p dstore/dstore_size103225485_embed1024_fp16 \
    -i dstore/knn.103225485.pca512.m64.index \
    -n 103225485 \

You should already observe a speedup.

Adaptive Retrieval

prepare heldout data to train the retrieval adaptor

# this randomly selects 90% of validation data as the training data to 
# train the retrieval adaptor
bash ef_knnlm/adaptive_retrieval/prepare_heldout.sh wikitext-103

prepare features

bash ef_knnlm/adaptive_retrieval/prepare_feature_pipeline.sh

train

bash ef_knnlm/adaptive_retrieval/train_ar.sh

It saves the retrieval adaptor checkpoints into checkpoint/wikitext-103-valid

evaluation

# the cutoff ratio in adaptive retrieval
# by default we cut off half of the retrieval
cutoff=50

# please change this to the .pt file path observed from the last step
ar_ckpt=xxx

# this hyperparameter needs to be changed if 
# the datastore sizes change (e.g. datastore pruning)
size=103225485

dstore_prefix=dstore/dstore_size${size}_embed1024_fp16
index_file=dstore/knn.${size}.pca512.m64.index

bash ef_knnlm/utils_cmd/eval_knnlm.sh \
    -d wikitext-103 \
    -s test \
    -p ${dstore_prefix} \
    -i ${index_file} \
    -c knnlm_ckpt/wt103_checkpoint_best.pt \
    -n ${size} \
    -f datasets/wikitext-103 \
    -a ctxt,freq,lm_ent,lm_max,fert \
    -u ${cutoff} \
    -h ${ar_ckpt} \
    # -w "True"

Datastore Pruning

precompute all the retrieval results for every record in the datastore:

# It is possible to parallel this operation by change 
# "--start-point" and "--num" arguments so that the training
# data would be splitted into multiple smaller ones. In this case
# the retrieval results would be saved into multiple files
bash ef_knnlm/dstore_compression/save_retrieval_results.sh

The retrieval results are saved into dstore/greedy_merge, other datastore pruning algorithms may be played around using these pre-computed results.

greedy merging

# perform greedy merging to yield a new smaller datastore, 
# and build faiss index from the new datastore
bash ef_knnlm/dstore_compression/merge_compression.sh

The pruned datastore and index are saved into dstore/greedy_merging, replace the previousdstore_prefix/index_file with the new ones to use the pruned the datastore. The option -w "True"needs to be passed to eval_knnlm.sh to read the generated datastore weights file from greedy merging.

Reference

@inproceedings{he2021eff,
title={Efficient Nearest Neighbor Language Models},
author={Junxian He and Graham Neubig and Taylor Berg-Kirkpatrick},
booktitle={Proceedings of EMNLP},
year={2021}
}
Owner
Junxian He
NLP/ML PhD student at CMU
Junxian He
[PNAS2021] The neural architecture of language: Integrative modeling converges on predictive processing

The neural architecture of language: Integrative modeling converges on predictive processing Code accompanying the paper The neural architecture of la

Martin Schrimpf 36 Dec 01, 2022
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Dec 31, 2022
(under submission) Bayesian Integration of a Generative Prior for Image Restoration

BIGPrior: Towards Decoupling Learned Prior Hallucination and Data Fidelity in Image Restoration Authors: Majed El Helou, and Sabine Süsstrunk {Note: p

Majed El Helou 22 Dec 17, 2022
This repository contains PyTorch models for SpecTr (Spectral Transformer).

SpecTr: Spectral Transformer for Hyperspectral Pathology Image Segmentation This repository contains PyTorch models for SpecTr (Spectral Transformer).

Boxiang Yun 45 Dec 13, 2022
PyTorch code for MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning

MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning PyTorch code for our ACL 2020 paper "MART: Memory-Augmented Recur

Jie Lei 雷杰 151 Jan 06, 2023
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022
Tensorflow-seq2seq-tutorials - Dynamic seq2seq in TensorFlow, step by step

seq2seq with TensorFlow Collection of unfinished tutorials. May be good for educational purposes. 1 - simple sequence-to-sequence model with dynamic u

Matvey Ezhov 1k Dec 17, 2022
This is the implementation of the paper "Self-supervised Outdoor Scene Relighting"

Self-supervised Outdoor Scene Relighting This is the implementation of the paper "Self-supervised Outdoor Scene Relighting". The model is implemented

Ye Yu 24 Dec 17, 2022
Implement object segmentation on images using HOG algorithm proposed in CVPR 2005

HOG Algorithm Implementation Description HOG (Histograms of Oriented Gradients) Algorithm is an algorithm aiming to realize object segmentation (edge

Leo Hsieh 2 Mar 12, 2022
Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions

Aquarius Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions NOTE: We are currently going through the open-source process requir

Zhiyuan YAO 0 Jun 02, 2022
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2021/11/19 Thank you for your interest in our work. We have uploaded the code of our MTUNet to help peers conduct further research on i

dotman 92 Dec 25, 2022
Code for Reciprocal Adversarial Learning for Brain Tumor Segmentation: A Solution to BraTS Challenge 2021 Segmentation Task

BRATS 2021 Solution For Segmentation Task This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmenta

Himashi Amanda Peiris 6 Sep 15, 2022
A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation

A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation This repository contains the source code of the paper A Differentiable

Bernardo Aceituno 2 May 05, 2022
A simple Tensorflow based library for deep and/or denoising AutoEncoder.

libsdae - deep-Autoencoder & denoising autoencoder A simple Tensorflow based library for Deep autoencoder and denoising AE. Library follows sklearn st

Rajarshee Mitra 147 Nov 18, 2022
[NeurIPS2021] Code Release of Learning Transferable Perturbations

Learning Transferable Adversarial Perturbations This is an official release of the paper Learning Transferable Adversarial Perturbations. The code is

Krishna Kanth 17 Nov 11, 2022
Official codebase for Pretrained Transformers as Universal Computation Engines.

universal-computation Overview Official codebase for Pretrained Transformers as Universal Computation Engines. Contains demo notebook and scripts to r

Kevin Lu 210 Dec 28, 2022
the official implementation of the paper "Isometric Multi-Shape Matching" (CVPR 2021)

Isometric Multi-Shape Matching (IsoMuSh) Paper-CVF | Paper-arXiv | Video | Code Citation If you find our work useful in your research, please consider

Maolin Gao 9 Jul 17, 2022
Convert dog pictures into various painting styles. Try LimnPet

LimnPet Cartoon stylization service project Try our service » Home page · Team notion · Members 목차 프로젝트 소개 프로젝트 목표 사용한 기술스택과 수행도구 팀원 구현 기능 주요 기능 추가 기능

LiJell 7 Jul 14, 2022
Official PyTorch implementation of "Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks" (AAAI 2022)

Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks This is the code for reproducing the results of th

2 Dec 27, 2021
Semantic Segmentation for Aerial Imagery using Convolutional Neural Network

This repo has been deprecated because whole things are re-implemented by using Chainer and I did refactoring for many codes. So please check this newe

Shunta Saito 27 Sep 23, 2022