This repository is dedicated to developing and maintaining code for experiments with wide neural networks.

Overview

Wide-Networks

This repository contains the code of various experiments on wide neural networks. In particular, we implement classes for abc-parameterizations of NNs as defined by (Yang & Hu 2021). Although an equivalent description can be given using only ac-parameterizations, we keep the 3 scales (a, b and c) in the code to allow more flexibility depending on how we want to approach the problem of dealing with infinitely wide NNs.

Structure of the code

The BaseModel class

All the code related to neural networks is in the directory pytorch. The different models we have implemented are in this directory along with the base class found in the file base_model.py which implements the generic attributes and methods all our NNs classes will share.

The BaseModel class inherits from the Pytorch Lightning module, and essentially defines the necessary attributes for any NN to work properly, namely the architecture (which is defined in the _build_model() method), the activation function (we consider the same activation function at each layer), the loss function, the optimizer and the initializer for the parameters of the network.

Optionally, the BaseModel class can define attributes for the normalization (e.g. BatchNorm, LayerNorm, etc) and the scheduler, and any of the aforementioned attributes (optional or not) can be customized depending on the needs (see examples for the scheduler of ipllr and the initializer of abc_param).

The ModelConfig class

All the hyper-parameters which define the model (depth, width, activation function name, loss name, optimizer name, etc) have to be passed as argument to _init_() as an object of the class ModelConfig (pytorch/configs/model.py). This class reads from a yaml config file which defines all the necessary objects for a NN (see examples in pytorch/configs). Essentially, the class ModelConfig is here so that one only has to set the yaml config file properly and then the attributes are correctly populated in BaseModel via the class ModelConfig.

abc-parameterizations

The code for abc-parameterizations (Yang & Hu 2021) can be found in pytorch/abc_params. There we define the base class for abc-parameterizations, mainly setting the layer, init and lr scales from the values of a,b,c, as well as defining the initial parameters through Gaussians of appropriate variance depending on the value of b and the activation function.

Everything that is architecture specific (fully-connected, conv, residual, etc) is left out of this base class and has to be implemented in the _build_model() method of the child class (see examples in pytorch/abc_params/fully_connected). We also define there the base classes for the ntk, muP (Yang & Hu 2021), ip and ipllr parameterizations, and there fully-connected implementations in pytorch/abc_params/fully_connected.

Experiment runs

Setup

Before running any experiment, make sure you first install all the necessary packages:

pip3 install -r requirements.txt

You can optionally create a virtual environment through

python3 -m venv your_env_dir

then activate it with

source your_env_dir/bin/activate

and then install the requirements once the environment is activated. Now, if you haven't installed the wide-networks library in site-packages, before running the command for your experiment, make sure you first add the wide-networks library to the PYTHONPATH by running the command

export PYTHONPATH=$PYTHONPATH:"$PWD"

from the root directory (wide-networks/.) of where the wide-networks library is located.

Python jobs

We define python jobs which can be run with arguments from the command line in the directory jobs. Mainly, those jobs launch a training / val / test pipeline for a given model using the Lightning module, and the results are collected in a dictionary which is saved to a pickle file a the end of training for later examination. Additionally, metrics are logged in TensorBoard and can be visualized during training with the command

tensorboard --logdir=`your_experiment_dir`

We have written jobs to launch experiments on MNIST and CIFAR-10 with the fully connected version of different models such as muP (Yang & Hu 2021), IP-LLR, Naive-IP which can be found in jobs/abc_parameterizations. Arguments can be passed to those Python scripts through the command line, but they are optional and the default values will be used if the parameters of the script are not manually set. For example, the command

python3 jobs/abc_parameterizations/fc_muP_run.py --activation="relu" --n_steps=600 --dataset="mnist"

will launch a training / val / test pipeline with ReLU as the activation function, 600 SGD steps and the MNIST dataset. The other parameters of the run (e.g. the base learning rate and batch size) will have their default values. The jobs will automatically create a directory (and potentially subdirectories) for the experiment and save there the python logs, the tensorboard events and the results dictionary saved to a pickle file as well as the checkpoints saved for the network.

Visualizing results

To visualize the results after training for a given experiment, one can launch the notebook experiments-results.ipynb located in pytorch/notebooks/training/abc_parameterizations, and simply change the arguments in the "Set variables" cell to load the results from the corresponding experiment. Then running all the cells will produce (and save) some figures related to the training phase (e.g. loss vs. steps).

Owner
Karl Hajjar
PhD student at Laboratoire de Mathématiques d'Orsay
Karl Hajjar
Unofficial pytorch implementation of 'Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization'

pytorch-AdaIN This is an unofficial pytorch implementation of a paper, Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization [Hua

Naoto Inoue 873 Jan 06, 2023
Reproduction process of AlexNet

PaddlePaddle论文复现杂谈 背景 注:该repo基于PaddlePaddle,对AlexNet进行复现。时间仓促,难免有所疏漏,如果问题或者想法,欢迎随时提issue一块交流。 飞桨论文复现赛地址:https://aistudio.baidu.com/aistudio/competitio

19 Nov 29, 2022
URIE: Universal Image Enhancementfor Visual Recognition in the Wild

URIE: Universal Image Enhancementfor Visual Recognition in the Wild This is the implementation of the paper "URIE: Universal Image Enhancement for Vis

Taeyoung Son 43 Sep 12, 2022
Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)

Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)- Emirhan BULUT

Emirhan BULUT 102 Nov 18, 2022
TumorInsight is a Brain Tumor Detection and Classification model built using RESNET50 architecture.

A Brain Tumor Detection and Classification Model built using RESNET50 architecture. The model is also deployed as a web application using Flask framework.

Pranav Khurana 0 Aug 17, 2021
Testbed of AI Systems Quality Management

qunomon Description A testbed for testing and managing AI system qualities. Demo Sorry. Not deployment public server at alpha version. Requirement Ins

AIST AIRC 15 Nov 27, 2021
Distinguishing Commercial from Editorial Content in News

Distinguishing Commercial from Editorial Content in News In this repository you can find the following: An anonymized version of the data used for my

Timo Kats 3 Sep 26, 2022
GraphGT: Machine Learning Datasets for Graph Generation and Transformation

GraphGT: Machine Learning Datasets for Graph Generation and Transformation Dataset Website | Paper Installation Using pip To install the core environm

y6q9 50 Aug 18, 2022
BED: A Real-Time Object Detection System for Edge Devices

BED: A Real-Time Object Detection System for Edge Devices About this project Thi

Data Analytics Lab at Texas A&M University 44 Nov 18, 2022
[SIGGRAPH Asia 2019] Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning

AGIS-Net Introduction This is the official PyTorch implementation of the Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning. paper | suppl

Yue Gao 102 Jan 02, 2023
Contrastive Fact Verification

VitaminC This repository contains the dataset and models for the NAACL 2021 paper: Get Your Vitamin C! Robust Fact Verification with Contrastive Evide

47 Dec 19, 2022
ICRA 2021 "Towards Precise and Efficient Image Guided Depth Completion"

PENet: Precise and Efficient Depth Completion This repo is the PyTorch implementation of our paper to appear in ICRA2021 on "Towards Precise and Effic

232 Dec 25, 2022
2.86% and 15.85% on CIFAR-10 and CIFAR-100

Shake-Shake regularization This repository contains the code for the paper Shake-Shake regularization. This arxiv paper is an extension of Shake-Shake

Xavier Gastaldi 294 Nov 22, 2022
Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation

Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation The code of: Cross-Image Region Mining with Region Proto

LiuWeide 16 Nov 26, 2022
A PyTorch implementation of DenseNet.

A PyTorch Implementation of DenseNet This is a PyTorch implementation of the DenseNet-BC architecture as described in the paper Densely Connected Conv

Brandon Amos 771 Dec 15, 2022
Residual Dense Net De-Interlace Filter (RDNDIF)

Residual Dense Net De-Interlace Filter (RDNDIF) Work in progress deep de-interlacer filter. It is based on the architecture proposed by Bernasconi et

Louis 7 Feb 15, 2022
Bu repo SAHI uygulamasını mantığını öğreniyoruz.

SAHI-Learn: SAHI'den Beraber Kodlamak İster Misiniz Herkese merhabalar ben Kadir Nar. SAHI kütüphanesine gönüllü geliştiriciyim. Bu repo SAHI kütüphan

Kadir Nar 11 Aug 22, 2022
Architecture Patterns with Python (TDD, DDD, EDM)

architecture-traning Architecture Patterns with Python (TDD, DDD, EDM) Chapter 5. 높은 기어비와 낮은 기어비의 TDD 5.2 도메인 계층 테스트를 서비스 계층으로 옮겨야 하는가? 도메인 계층 테스트 def

minsung sim 2 Mar 04, 2022
TEDSummary is a speech summary corpus. It includes TED talks subtitle (Document), Title-Detail (Summary), speaker name (Meta info), MP4 URL, and utterance id

TEDSummary is a speech summary corpus. It includes TED talks subtitle (Document), Title-Detail (Summary), speaker name (Meta info), MP4 URL

3 Dec 26, 2022
Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis

Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis, including human motion imitation, appearance transfer, and novel view synthesis. Currently the paper is under review

2.3k Jan 05, 2023