Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization' (ICCV-21 Oral)

Overview

Learning-Action-Completeness-from-Points

Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization' (ICCV 2021 Oral)

architecture

Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization
Pilhyeon Lee (Yonsei Univ.), Hyeran Byun (Yonsei Univ.)

Paper: https://arxiv.org/abs/2108.05029

Abstract: We tackle the problem of localizing temporal intervals of actions with only a single frame label for each action instance for training. Owing to label sparsity, existing work fails to learn action completeness, resulting in fragmentary action predictions. In this paper, we propose a novel framework, where dense pseudo-labels are generated to provide completeness guidance for the model. Concretely, we first select pseudo background points to supplement point-level action labels. Then, by taking the points as seeds, we search for the optimal sequence that is likely to contain complete action instances while agreeing with the seeds. To learn completeness from the obtained sequence, we introduce two novel losses that contrast action instances with background ones in terms of action score and feature similarity, respectively. Experimental results demonstrate that our completeness guidance indeed helps the model to locate complete action instances, leading to large performance gains especially under high IoU thresholds. Moreover, we demonstrate the superiority of our method over existing state-of-the-art methods on four benchmarks: THUMOS'14, GTEA, BEOID, and ActivityNet. Notably, our method even performs comparably to recent fully-supervised methods, at the 6 times cheaper annotation cost.

Prerequisites

Recommended Environment

  • Python 3.6
  • Pytorch 1.6
  • Tensorflow 1.15 (for Tensorboard)
  • CUDA 10.2

Depencencies

You can set up the environments by using $ pip3 install -r requirements.txt.

Data Preparation

  1. Prepare THUMOS'14 dataset.

    • We excluded three test videos (270, 1292, 1496) as previous work did.
  2. Extract features with two-stream I3D networks

    • We recommend extracting features using this repo.
    • For convenience, we provide the features we used. You can find them here.
  3. Place the features inside the dataset folder.

    • Please ensure the data structure is as below.
├── dataset
   └── THUMOS14
       ├── gt.json
       ├── split_train.txt
       ├── split_test.txt
       ├── fps_dict.json
       ├── point_gaussian
           └── point_labels.csv
       └── features
           ├── train
               ├── rgb
                   ├── video_validation_0000051.npy
                   ├── video_validation_0000052.npy
                   └── ...
               └── flow
                   ├── video_validation_0000051.npy
                   ├── video_validation_0000052.npy
                   └── ...
           └── test
               ├── rgb
                   ├── video_test_0000004.npy
                   ├── video_test_0000006.npy
                   └── ...
               └── flow
                   ├── video_test_0000004.npy
                   ├── video_test_0000006.npy
                   └── ...

Usage

Running

You can easily train and evaluate the model by running the script below.

If you want to try other training options, please refer to options.py.

$ bash run.sh

Evaulation

The pre-trained model can be found here. You can evaluate the model by running the command below.

$ bash run_eval.sh

References

We note that this repo was built upon our previous models.

  • Background Suppression Network for Weakly-supervised Temporal Action Localization (AAAI 2020) [paper] [code]
  • Weakly-supervised Temporal Action Localization by Uncertainty Modeling (AAAI 2021) [paper] [code]

We referenced the repos below for the code.

In addition, we referenced a part of code in the following repo for the greedy algorithm implementation.

Citation

If you find this code useful, please cite our paper.

@inproceedings{lee2021completeness,
  title={Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization},
  author={Pilhyeon Lee and Hyeran Byun},
  booktitle={IEEE/CVF International Conference on Computer Vision},
  year={2021},
}

Contact

If you have any question or comment, please contact the first author of the paper - Pilhyeon Lee ([email protected]).

Owner
Pilhyeon Lee
* Ph.D. student in Yonsei Univ. (2018.03.~present)            
Pilhyeon Lee
Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination

Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination (ICCV 2021) Dataset License This work is l

DongYoung Kim 33 Jan 04, 2023
Official PyTorch implementation of "Evolving Search Space for Neural Architecture Search"

Evolving Search Space for Neural Architecture Search Usage Install all required dependencies in requirements.txt and replace all ..path/..to in the co

Yuanzheng Ci 10 Oct 24, 2022
DeepAL: Deep Active Learning in Python

DeepAL: Deep Active Learning in Python Python implementations of the following active learning algorithms: Random Sampling Least Confidence [1] Margin

Kuan-Hao Huang 583 Jan 03, 2023
[CVPR2021] De-rendering the World's Revolutionary Artefacts

De-rendering the World's Revolutionary Artefacts Project Page | Video | Paper In CVPR 2021 Shangzhe Wu1,4, Ameesh Makadia4, Jiajun Wu2, Noah Snavely4,

49 Nov 06, 2022
OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network

Stock Price Prediction of Apple Inc. Using Recurrent Neural Network OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network Dataset:

Nouroz Rahman 410 Jan 05, 2023
TensorLight - A high-level framework for TensorFlow

TensorLight is a high-level framework for TensorFlow-based machine intelligence applications. It reduces boilerplate code and enables advanced feature

Benjamin Kan 10 Jul 31, 2022
Vehicles Counting using YOLOv4 + DeepSORT + Flask + Ngrok

A project for counting vehicles using YOLOv4 + DeepSORT + Flask + Ngrok

Duong Tran Thanh 37 Dec 16, 2022
Text to Image Generation with Semantic-Spatial Aware GAN

text2image This repository includes the implementation for Text to Image Generation with Semantic-Spatial Aware GAN This repo is not completely. Netwo

CVDDL 124 Dec 30, 2022
Contenido del curso Bases de datos del DCC PUC versión 2021-2

IIC2413 - Bases de Datos Tabla de contenidos Equipo Profesores Ayudantes Contenidos Calendario Evaluaciones Resumen de notas Foro Política de integrid

54 Nov 23, 2022
Multi Camera Calibration

Multi Camera Calibration 'modules/camera_calibration/app/camera_calibration.cpp' is for calculating extrinsic parameter of each individual cameras. 'm

7 Dec 01, 2022
code for our paper "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer"

SHOT++ Code for our TPAMI submission "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer" that is ext

75 Dec 16, 2022
Official Implementation of DDOD (Disentangle your Dense Object Detector), ACM MM2021

Disentangle Your Dense Object Detector This repo contains the supported code and configuration files to reproduce object detection results of Disentan

loveSnowBest 51 Jan 07, 2023
Video Frame Interpolation without Temporal Priors (a general method for blurry video interpolation)

Video Frame Interpolation without Temporal Priors (NeurIPS2020) [Paper] [video] How to run Prerequisites NVIDIA GPU + CUDA 9.0 + CuDNN 7.6.5 Pytorch 1

YoujianZhang 31 Sep 04, 2022
The code for Expectation-Maximization Attention Networks for Semantic Segmentation (ICCV'2019 Oral)

EMANet News The bug in loading the pretrained model is now fixed. I have updated the .pth. To use it, download it again. EMANet-101 gets 80.99 on the

Xia Li 李夏 663 Nov 30, 2022
Image Data Augmentation in Keras

Image data augmentation is a technique that can be used to artificially expand the size of a training dataset by creating modified versions of images in the dataset.

Grace Ugochi Nneji 3 Feb 15, 2022
Transformer - Transformer in PyTorch

Transformer 完成进度 Embeddings and PositionalEncoding with example. MultiHeadAttent

Tianyang Li 1 Jan 06, 2022
[MICCAI'20] AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes

AlignShift NEW: Code for our new MICCAI'21 paper "Asymmetric 3D Context Fusion for Universal Lesion Detection" will also be pushed to this repository

Medical 3D Vision 42 Jan 06, 2023
(Arxiv 2021) NeRF--: Neural Radiance Fields Without Known Camera Parameters

NeRF--: Neural Radiance Fields Without Known Camera Parameters Project Page | Arxiv | Colab Notebook | Data Zirui Wang¹, Shangzhe Wu², Weidi Xie², Min

Active Vision Laboratory 411 Dec 26, 2022
Finetuning Pipeline

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022