[MICCAI'20] AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes

Overview

AlignShift

NEW: Code for our new MICCAI'21 paper "Asymmetric 3D Context Fusion for Universal Lesion Detection" will also be pushed to this repository soon.

AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes (MICCAI'20, early accepted)

Key contributions

  • AlignShift aims at a plug-and-play replacement of standard 3D convolution for 3D medical images, which enables 2D-to-3D pretraining as ACS Convolutions. It converts theoretically any 2D pretrained network into thickness-aware 3D network.
  • AlignShift bridges the performance gap between thin- and thick-slice volumes by a unified framework. Remarkably, the AlignShift-converted networks behave like 3D for the thin-slice, nevertheless degenerate to 2D for the thick-slice adaptively.
  • Without whistles and bells, we outperform previous state of the art by considerable margins on large-scale DeepLesion benchmark for universal lesion detection.

Code structure

  • alignshift the core implementation of AlignShift convolution and TSM convolution, including the operators, models, and 2D-to-3D/AlignShift/TSM model converters.
    • operators: include AlignShiftConv, TSMConv.
    • converters.py: include converters which convert 2D models to 3dConv/AlignShiftConv/TSMConv counterparts.
    • models: Native AlignShift/TSM models.
  • deeplesion the experiment code is base on mmdetection ,this directory consists of compounents used in mmdetection.
  • mmdet

Installation

  • git clone this repository
  • pip install -e .

Convert a 2D model into 3D with a single line of code

from converter import Converter
import torchvision
from alignshift import AlignShiftConv
# m is a standard pytorch model
m = torchvision.models.resnet18(True)
alignshift_conv_cfg = dict(conv_type=AlignShiftConv, 
                          n_fold=8, 
                          alignshift=True, 
                          inplace=True,
                          ref_spacing=0.2, 
                          shift_padding_zero=True)
m = Converter(m, 
              alignshift_conv_cfg, 
              additional_forward_fts=['thickness'], 
              skip_first_conv=True, 
              first_conv_input_channles=1)
# after converted, m is using AlignShiftConv and capable of processing 3D volumes
x = torch.rand(batch_size, in_channels, D, H, W)
thickness = torch.rand(batch_size, 1)
out = m(x, thickness)

Usage of AlignShiftConv/TSMConv operators

from alignshift.operators import AlignShiftConv, TSMConv
x = torch.rand(batch_size, 3, D, H, W)
thickness = torch.rand(batch_size, 1)
# AlignShiftConv to process 3D volumnes
conv = AlignShiftConv(in_channels=3, out_channels=10, kernel_size=3, padding=1, n_fold=8, alignshift=True, ref_thickness=2.0)
out = conv(x, thickness)
# TSMConv to process 3D volumnes
conv = TSMConv(in_channels=3, out_channels=10, kernel_size=3, padding=1, n_fold=8, tsm=True)
out = conv(x)

Usage of native AlignShiftConv/TSMConv models

from alignshift.models import DenseNetCustomTrunc3dAlign, DenseNetCustomTrunc3dTSM
net = DenseNetCustomTrunc3dAlign(num_classes=3)
B, C_in, D, H, W = (1, 3, 7, 256, 256)
input_3d = torch.rand(B, C_in, D, H, W)
thickness = torch.rand(batch_size, 1)
output_3d = net(input_3d, thickness)

How to run the experiments

Owner
Medical 3D Vision
Medical 3D Vision
Learning to Estimate Hidden Motions with Global Motion Aggregation

Learning to Estimate Hidden Motions with Global Motion Aggregation (GMA) This repository contains the source code for our paper: Learning to Estimate

Shihao Jiang (Zac) 221 Dec 18, 2022
Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting

Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting 1. Classification Task PyTorch implementat

Yongho Kim 0 Apr 24, 2022
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a building extraction plugin of QGIS based on PaddlePaddle. TODO Extract building on 512x512 remote sensing images. Extract build

Yizhou Chen 11 Sep 26, 2022
Source code related to the article submitted to the International Conference on Computational Science ICCS 2022 in London

POTHER: Patch-Voted Deep Learning-based Chest X-ray Bias Analysis for COVID-19 Detection Source code related to the article submitted to the Internati

Tomasz Szczepański 1 Apr 29, 2022
Repo for "Physion: Evaluating Physical Prediction from Vision in Humans and Machines" submission to NeurIPS 2021 (Datasets & Benchmarks track)

Physion: Evaluating Physical Prediction from Vision in Humans and Machines This repo contains code and data to reproduce the results in our paper, Phy

Cognitive Tools Lab 38 Jan 06, 2023
[ICCV 2021] Group-aware Contrastive Regression for Action Quality Assessment

CoRe Created by Xumin Yu*, Yongming Rao*, Wenliang Zhao, Jiwen Lu, Jie Zhou This is the PyTorch implementation for ICCV paper Group-aware Contrastive

Xumin Yu 31 Dec 24, 2022
This is the paddle code for SeBoW(Self-Born wiring for neural trees), a kind of neural tree born form a large search space

SeBoW: Self-Born Wiring for neural trees(PaddlePaddle version) This is the paddle code for SeBoW(Self-Born wiring for neural trees), a kind of neural

HollyLee 13 Dec 08, 2022
[ACM MM 2019 Oral] Cycle In Cycle Generative Adversarial Networks for Keypoint-Guided Image Generation

Contents Cycle-In-Cycle GANs Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Acknowledgments Relat

Hao Tang 67 Dec 14, 2022
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
Generic image compressor for machine learning. Pytorch code for our paper "Lossy compression for lossless prediction".

Lossy Compression for Lossless Prediction Using: Training: This repostiory contains our implementation of the paper: Lossy Compression for Lossless Pr

Yann Dubois 84 Jan 02, 2023
NNR conformation conditional and global probabilities estimation and analysis in peptides or proteins fragments

NNR and global probabilities estimation and analysis in peptides or protein fragments This module calculates global and NNR conformation dependent pro

0 Jul 15, 2021
Fashion Entity Classification

Fashion-Entity-Classification - Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grays

ADITYA SHAH 1 Jan 04, 2022
Joint learning of images and text via maximization of mutual information

mutual_info_img_txt Joint learning of images and text via maximization of mutual information. This repository incorporates the algorithms presented in

Ruizhi Liao 10 Dec 22, 2022
Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021)

Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021) This repository contains the code for our ICCV2021 paper by Jia-Ren Cha

Jia-Ren Chang 40 Dec 27, 2022
A minimalist tool to display a network graph.

A tool to get a minimalist view of any architecture This tool has only be tested with the models included in this repo. Therefore, I can't guarantee t

Thibault Castells 1 Feb 11, 2022
Simple sinc interpolation in PyTorch.

Kazane: simple sinc interpolation for 1D signal in PyTorch Kazane utilize FFT based convolution to provide fast sinc interpolation for 1D signal when

Chin-Yun Yu 10 May 03, 2022
PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time

PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time The implementation is based on SIGGRAPH Aisa'20. Dependencies Python 3.7 Ubuntu

soratobtai 124 Dec 08, 2022
CS50's Introduction to Artificial Intelligence Test Scripts

CS50's Introduction to Artificial Intelligence Test Scripts 🤷‍♂️ What's this? 🤷‍♀️ This repository contains Python scripts to automate tests for mos

Jet Kan 2 Dec 28, 2022
Anti-UAV base on PaddleDetection

Paddle-Anti-UAV Anti-UAV base on PaddleDetection Background UAVs are very popular and we can see them in many public spaces, such as parks and playgro

Qingzhong Wang 2 Apr 20, 2022
Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORAL)

Scribble-Supervised LiDAR Semantic Segmentation Dataset and code release for the paper Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORA

102 Dec 25, 2022