[MICCAI'20] AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes

Overview

AlignShift

NEW: Code for our new MICCAI'21 paper "Asymmetric 3D Context Fusion for Universal Lesion Detection" will also be pushed to this repository soon.

AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes (MICCAI'20, early accepted)

Key contributions

  • AlignShift aims at a plug-and-play replacement of standard 3D convolution for 3D medical images, which enables 2D-to-3D pretraining as ACS Convolutions. It converts theoretically any 2D pretrained network into thickness-aware 3D network.
  • AlignShift bridges the performance gap between thin- and thick-slice volumes by a unified framework. Remarkably, the AlignShift-converted networks behave like 3D for the thin-slice, nevertheless degenerate to 2D for the thick-slice adaptively.
  • Without whistles and bells, we outperform previous state of the art by considerable margins on large-scale DeepLesion benchmark for universal lesion detection.

Code structure

  • alignshift the core implementation of AlignShift convolution and TSM convolution, including the operators, models, and 2D-to-3D/AlignShift/TSM model converters.
    • operators: include AlignShiftConv, TSMConv.
    • converters.py: include converters which convert 2D models to 3dConv/AlignShiftConv/TSMConv counterparts.
    • models: Native AlignShift/TSM models.
  • deeplesion the experiment code is base on mmdetection ,this directory consists of compounents used in mmdetection.
  • mmdet

Installation

  • git clone this repository
  • pip install -e .

Convert a 2D model into 3D with a single line of code

from converter import Converter
import torchvision
from alignshift import AlignShiftConv
# m is a standard pytorch model
m = torchvision.models.resnet18(True)
alignshift_conv_cfg = dict(conv_type=AlignShiftConv, 
                          n_fold=8, 
                          alignshift=True, 
                          inplace=True,
                          ref_spacing=0.2, 
                          shift_padding_zero=True)
m = Converter(m, 
              alignshift_conv_cfg, 
              additional_forward_fts=['thickness'], 
              skip_first_conv=True, 
              first_conv_input_channles=1)
# after converted, m is using AlignShiftConv and capable of processing 3D volumes
x = torch.rand(batch_size, in_channels, D, H, W)
thickness = torch.rand(batch_size, 1)
out = m(x, thickness)

Usage of AlignShiftConv/TSMConv operators

from alignshift.operators import AlignShiftConv, TSMConv
x = torch.rand(batch_size, 3, D, H, W)
thickness = torch.rand(batch_size, 1)
# AlignShiftConv to process 3D volumnes
conv = AlignShiftConv(in_channels=3, out_channels=10, kernel_size=3, padding=1, n_fold=8, alignshift=True, ref_thickness=2.0)
out = conv(x, thickness)
# TSMConv to process 3D volumnes
conv = TSMConv(in_channels=3, out_channels=10, kernel_size=3, padding=1, n_fold=8, tsm=True)
out = conv(x)

Usage of native AlignShiftConv/TSMConv models

from alignshift.models import DenseNetCustomTrunc3dAlign, DenseNetCustomTrunc3dTSM
net = DenseNetCustomTrunc3dAlign(num_classes=3)
B, C_in, D, H, W = (1, 3, 7, 256, 256)
input_3d = torch.rand(B, C_in, D, H, W)
thickness = torch.rand(batch_size, 1)
output_3d = net(input_3d, thickness)

How to run the experiments

Owner
Medical 3D Vision
Medical 3D Vision
A complete speech segmentation system using Kaldi and x-vectors for voice activity detection (VAD) and speaker diarisation.

bbc-speech-segmenter: Voice Activity Detection & Speaker Diarization A complete speech segmentation system using Kaldi and x-vectors for voice activit

BBC 16 Oct 27, 2022
Hand Gesture Volume Control is AIML based project which uses image processing to control the volume of your Computer.

Hand Gesture Volume Control Modules There are basically three modules Handtracking Program Handtracking Module Volume Control Program Handtracking Pro

VITTAL 1 Jan 12, 2022
Parameterized Explainer for Graph Neural Network

PGExplainer This is a Tensorflow implementation of the paper: Parameterized Explainer for Graph Neural Network https://arxiv.org/abs/2011.04573 NeurIP

Dongsheng Luo 89 Dec 12, 2022
Style transfer, deep learning, feature transform

FastPhotoStyle License Copyright (C) 2018 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons

NVIDIA Corporation 10.9k Jan 02, 2023
Code for "Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans" CVPR 2021 best paper candidate

News 05/17/2021 To make the comparison on ZJU-MoCap easier, we save quantitative and qualitative results of other methods at here, including Neural Vo

ZJU3DV 748 Jan 07, 2023
TimeSHAP explains Recurrent Neural Network predictions.

TimeSHAP TimeSHAP is a model-agnostic, recurrent explainer that builds upon KernelSHAP and extends it to the sequential domain. TimeSHAP computes even

Feedzai 90 Dec 18, 2022
Parasite: a tool allowing you to compress and decompress files, to reduce their size

🦠 Parasite 🦠 Parasite is a tool written in Python3 allowing you to "compress" any file, reducing its size. ⭐ Features ⭐ + Fast + Good optimization,

Billy 30 Nov 25, 2022
MultiMix: Sparingly Supervised, Extreme Multitask Learning From Medical Images (ISBI 2021, MELBA 2021)

MultiMix This repository contains the implementation of MultiMix. Our publications for this project are listed below: "MultiMix: Sparingly Supervised,

Ayaan Haque 27 Dec 22, 2022
Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning

Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning Reference Abeßer, J. & Müller, M. Towards Audio Domain Adapt

Jakob Abeßer 2 Jul 06, 2022
[WACV 2022] Contextual Gradient Scaling for Few-Shot Learning

CxGrad - Official PyTorch Implementation Contextual Gradient Scaling for Few-Shot Learning Sanghyuk Lee, Seunghyun Lee, and Byung Cheol Song In WACV 2

Sanghyuk Lee 4 Dec 05, 2022
Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport

Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport This GitHub page provides code for reproducing the results i

Andrew Zammit Mangion 1 Nov 08, 2021
Code for approximate graph reduction techniques for cardinality-based DSFM, from paper

SparseCard Code for approximate graph reduction techniques for cardinality-based DSFM, from paper "Approximate Decomposable Submodular Function Minimi

Nate Veldt 1 Nov 25, 2022
Pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model'

RTK-PAD This is an official pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model', which is accepted by IEEE T

6 Aug 01, 2022
This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021.

MCGC Description This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021. Datasets Results ACM DBLP IMDB Amazon photos Amazon co

31 Nov 14, 2022
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig

Yixuan Su 79 Nov 04, 2022
Codecov coverage standard for Python

Python-Standard Last Updated: 01/07/22 00:09:25 What is this? This is a Python application, with basic unit tests, for which coverage is uploaded to C

Codecov 10 Nov 04, 2022
Machine learning library for fast and efficient Gaussian mixture models

This repository contains code which implements the Stochastic Gaussian Mixture Model (S-GMM) for event-based datasets Dependencies CMake Premake4 Blaz

Omar Oubari 1 Dec 19, 2022
Notification Triggers for Python

Notipyer Notification triggers for Python Send async email notifications via Python. Get updates/crashlogs from your scripts with ease. Installation p

Chirag Jain 17 May 16, 2022
Starter code for the ICCV 2021 paper, 'Detecting Invisible People'

Detecting Invisible People [ICCV 2021 Paper] [Website] Tarasha Khurana, Achal Dave, Deva Ramanan Introduction This repository contains code for Detect

Tarasha Khurana 28 Sep 16, 2022
The deployment framework aims to provide a simple, lightweight, fast integrated, pipelined deployment framework that ensures reliability, high concurrency and scalability of services.

savior是一个能够进行快速集成算法模块并支持高性能部署的轻量开发框架。能够帮助将团队进行快速想法验证(PoC),避免重复的去github上找模型然后复现模型;能够帮助团队将功能进行流程拆解,很方便的提高分布式执行效率;能够有效减少代码冗余,减少不必要负担。

Tao Luo 125 Dec 22, 2022