[MICCAI'20] AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes

Overview

AlignShift

NEW: Code for our new MICCAI'21 paper "Asymmetric 3D Context Fusion for Universal Lesion Detection" will also be pushed to this repository soon.

AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes (MICCAI'20, early accepted)

Key contributions

  • AlignShift aims at a plug-and-play replacement of standard 3D convolution for 3D medical images, which enables 2D-to-3D pretraining as ACS Convolutions. It converts theoretically any 2D pretrained network into thickness-aware 3D network.
  • AlignShift bridges the performance gap between thin- and thick-slice volumes by a unified framework. Remarkably, the AlignShift-converted networks behave like 3D for the thin-slice, nevertheless degenerate to 2D for the thick-slice adaptively.
  • Without whistles and bells, we outperform previous state of the art by considerable margins on large-scale DeepLesion benchmark for universal lesion detection.

Code structure

  • alignshift the core implementation of AlignShift convolution and TSM convolution, including the operators, models, and 2D-to-3D/AlignShift/TSM model converters.
    • operators: include AlignShiftConv, TSMConv.
    • converters.py: include converters which convert 2D models to 3dConv/AlignShiftConv/TSMConv counterparts.
    • models: Native AlignShift/TSM models.
  • deeplesion the experiment code is base on mmdetection ,this directory consists of compounents used in mmdetection.
  • mmdet

Installation

  • git clone this repository
  • pip install -e .

Convert a 2D model into 3D with a single line of code

from converter import Converter
import torchvision
from alignshift import AlignShiftConv
# m is a standard pytorch model
m = torchvision.models.resnet18(True)
alignshift_conv_cfg = dict(conv_type=AlignShiftConv, 
                          n_fold=8, 
                          alignshift=True, 
                          inplace=True,
                          ref_spacing=0.2, 
                          shift_padding_zero=True)
m = Converter(m, 
              alignshift_conv_cfg, 
              additional_forward_fts=['thickness'], 
              skip_first_conv=True, 
              first_conv_input_channles=1)
# after converted, m is using AlignShiftConv and capable of processing 3D volumes
x = torch.rand(batch_size, in_channels, D, H, W)
thickness = torch.rand(batch_size, 1)
out = m(x, thickness)

Usage of AlignShiftConv/TSMConv operators

from alignshift.operators import AlignShiftConv, TSMConv
x = torch.rand(batch_size, 3, D, H, W)
thickness = torch.rand(batch_size, 1)
# AlignShiftConv to process 3D volumnes
conv = AlignShiftConv(in_channels=3, out_channels=10, kernel_size=3, padding=1, n_fold=8, alignshift=True, ref_thickness=2.0)
out = conv(x, thickness)
# TSMConv to process 3D volumnes
conv = TSMConv(in_channels=3, out_channels=10, kernel_size=3, padding=1, n_fold=8, tsm=True)
out = conv(x)

Usage of native AlignShiftConv/TSMConv models

from alignshift.models import DenseNetCustomTrunc3dAlign, DenseNetCustomTrunc3dTSM
net = DenseNetCustomTrunc3dAlign(num_classes=3)
B, C_in, D, H, W = (1, 3, 7, 256, 256)
input_3d = torch.rand(B, C_in, D, H, W)
thickness = torch.rand(batch_size, 1)
output_3d = net(input_3d, thickness)

How to run the experiments

Owner
Medical 3D Vision
Medical 3D Vision
Pytorch Implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension)

DiffSinger - PyTorch Implementation PyTorch implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension). Status

Keon Lee 152 Jan 02, 2023
GestureSSD CBAM - A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js

GestureSSD_CBAM A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js SSD implementation is based on https://github

xue_senhua1999 2 Jan 06, 2022
GoodNews Everyone! Context driven entity aware captioning for news images

This is the code for a CVPR 2019 paper, called GoodNews Everyone! Context driven entity aware captioning for news images. Enjoy! Model preview: Huge T

117 Dec 19, 2022
MT3: Multi-Task Multitrack Music Transcription

MT3: Multi-Task Multitrack Music Transcription MT3 is a multi-instrument automatic music transcription model that uses the T5X framework. This is not

Magenta 867 Dec 29, 2022
Pose estimation with MoveNet Lightning

Pose Estimation With MoveNet Lightning MoveNet is the TensorFlow pre-trained model that identifies 17 different key points of the human body. It is th

Yash Vora 2 Jan 04, 2022
A unet implementation for Image semantic segmentation

Unet-pytorch a unet implementation for Image semantic segmentation 参考网上的Unet做分割的代码,做了一个针对kaggle地盐识别的,请去以下地址获取数据集: https://www.kaggle.com/c/tgs-salt-id

Rabbit 3 Jun 29, 2022
Functional TensorFlow Implementation of Singular Value Decomposition for paper Fast Graph Learning

tf-fsvd TensorFlow Implementation of Functional Singular Value Decomposition for paper Fast Graph Learning with Unique Optimal Solutions Cite If you f

Sami Abu-El-Haija 14 Nov 25, 2021
This repo contains the code and data used in the paper "Wizard of Search Engine: Access to Information Through Conversations with Search Engines"

Wizard of Search Engine: Access to Information Through Conversations with Search Engines by Pengjie Ren, Zhongkun Liu, Xiaomeng Song, Hongtao Tian, Zh

19 Oct 27, 2022
Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions"

Graph Convolution Simulator (GCS) Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions" Requirements: PyTor

yifan 10 Oct 18, 2022
Apply AnimeGAN-v2 across frames of a video clip

title emoji colorFrom colorTo sdk app_file pinned AnimeGAN-v2 For Videos 🔥 blue red gradio app.py false AnimeGAN-v2 For Videos Apply AnimeGAN-v2 acro

Nathan Raw 36 Oct 18, 2022
Activity tragle - Google is tracking everything, we just look at it

activity_tragle Google is tracking everything, we just look at it here. You need

BERNARD Guillaume 1 Feb 15, 2022
pytorch implementation of Attention is all you need

A Pytorch Implementation of the Transformer: Attention Is All You Need Our implementation is largely based on Tensorflow implementation Requirements N

230 Dec 07, 2022
Spatial-Location-Constraint-Prototype-Loss-for-Open-Set-Recognition

Spatial Location Constraint Prototype Loss for Open Set Recognition Official PyTorch implementation of "Spatial Location Constraint Prototype Loss for

Xia Ziheng 12 Jun 24, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
Contrastive Learning of Structured World Models

Contrastive Learning of Structured World Models This repository contains the official PyTorch implementation of: Contrastive Learning of Structured Wo

Thomas Kipf 371 Jan 06, 2023
Model-based Reinforcement Learning Improves Autonomous Racing Performance

Racing Dreamer: Model-based versus Model-free Deep Reinforcement Learning for Autonomous Racing Cars In this work, we propose to learn a racing contro

Cyber Physical Systems - TU Wien 38 Dec 06, 2022
Deep learning PyTorch library for time series forecasting, classification, and anomaly detection

Deep learning for time series forecasting Flow forecast is an open-source deep learning for time series forecasting framework. It provides all the lat

AIStream 1.2k Jan 04, 2023
This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset.

FACT This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset. To cite, please use:

105 Dec 17, 2022
This is a code repository for the paper "Graph Auto-Encoders for Financial Clustering".

Repository for the paper "Graph Auto-Encoders for Financial Clustering" Requirements Python 3.6 torch torch_geometric Instructions This is a simple c

Edward Turner 1 Dec 02, 2021
YolactEdge: Real-time Instance Segmentation on the Edge

YolactEdge, the first competitive instance segmentation approach that runs on small edge devices at real-time speeds. Specifically, YolactEdge runs at up to 30.8 FPS on a Jetson AGX Xavier (and 172.7

Haotian Liu 1.1k Jan 06, 2023