BOVText: A Large-Scale, Multidimensional Multilingual Dataset for Video Text Spotting

Overview

BOVText: A Large-Scale, Bilingual Open World Dataset for Video Text Spotting

Updated on December 10, 2021 (Release all dataset(2021 videos))

Updated on June 06, 2021 (Added evaluation metric)

Released on May 26, 2021

Description

YouTube Demo | Homepage | Downloads(Google Drive) Downloads(Baidu Drive)(password:go10) | Paper

We create a new large-scale benchmark dataset named Bilingual, Open World Video Text(BOVText), the first large-scale and multilingual benchmark for video text spotting in a variety of scenarios. All data are collected from KuaiShou and YouTube

There are mainly three features for BOVText:

  • Large-Scale: we provide 2,000+ videos with more than 1,750,000 frame images, four times larger than the existing largest dataset for text in videos.
  • Open Scenario:BOVText covers 30+ open categories with a wide selection of various scenarios, e.g., life vlog, sports news, automatic drive, cartoon, etc. Besides, caption text and scene text are separately tagged for the two different representational meanings in the video. The former represents more theme information, and the latter is the scene information.
  • Bilingual:BOVText provides Bilingual text annotation to promote multiple cultures live and communication.

Tasks and Metrics

The proposed BOVText support four task(text detection, recognition, tracking, spotting), but mainly includes two tasks:

  • Video Frames Detection.
  • Video Frames Recognition.
  • Video Text Tracking.
  • End to End Text Spotting in Videos.

MOTP (Multiple Object Tracking Precision)[1], MOTA (Multiple Object Tracking Accuracy) and IDF1[3,4] as the three important metrics are used to evaluate task1 (text tracking) for MMVText. In particular, we make use of the publicly available py-motmetrics library (https://github.com/cheind/py-motmetrics) for the establishment of the evaluation metric.

Word recognition evaluation is case-insensitive, and accent-insensitive. The transcription '###' or "#1" is special, as it is used to define text areas that are unreadable. During the evaluation, such areas will not be taken into account: a method will not be penalised if it does not detect these words, while a method that detects them will not get any better score.

Task 3 for Text Tracking Evaluation

The objective of this task is to obtain the location of words in the video in terms of their affine bounding boxes. The task requires that words are both localised correctly in every frame and tracked correctly over the video sequence. Please output the json file as following:

Output
.
├-Cls10_Program_Cls10_Program_video11.json
│-Cls10_Program_Cls10_Program_video12.json
│-Cls10_Program_Cls10_Program_video13.json
├-Cls10_Program_Cls10_Program_video14.json
│-Cls10_Program_Cls10_Program_video15.json
│-Cls10_Program_Cls10_Program_video16.json
│-Cls11_Movie_Cls11_Movie_video17.json
│-Cls11_Movie_Cls11_Movie_video18.json
│-Cls11_Movie_Cls11_Movie_video19.json
│-Cls11_Movie_Cls11_Movie_video20.json
│-Cls11_Movie_Cls11_Movie_video21.json
│-...


And then cd Evaluation_Protocol/Task1_VideoTextTracking, run following script:

python evaluation.py --groundtruths ./Test/Annotation --tests ./output

Task 4 for Text Spotting Evaluation

Please output the json file like task 3.

cd Evaluation_Protocol/Task2_VideoTextSpotting, run following script:

python evaluation.py --groundtruths ./Test/Annotation --tests ./output

Ground Truth (GT) Format and Downloads

We create a single JSON file for each video in the dataset to store the ground truth in a structured format, following the naming convention: gt_[frame_id], where frame_id refers to the index of the video frame in the video

In a JSON file, each gt_[frame_id] corresponds to a list, where each line in the list correspond to one word in the image and gives its bounding box coordinates, transcription, text type(caption or scene text) and tracking ID, in the following format:

{

“frame_1”:  
            [
			{
				"points": [x1, y1, x2, y2, x3, y3, x4, y4],
				“tracking ID”: "1" ,
				“transcription”: "###",
				“category”: title/caption/scene text,
				“language”: Chinese/English,
				“ID_transcription“:  complete words for the whole trajectory
			},

               …

            {
				"points": [x1, y1, x2, y2, x3, y3, x4, y4],
				“tracking ID”: "#" ,
				“transcription”: "###",
				“category”: title/caption/scene text,
				“language”: Chinese/English,
				“ID_transcription“:  complete words for the whole trajectory
			}
			],

“frame_2”:  
            [
			{
				"points": [x1, y1, x2, y2, x3, y3, x4, y4],
				“tracking ID”: "1" ,
				“transcription”: "###",
				“category”: title/caption/scene text,
				“language”: Chinese/English,
				“ID_transcription“:  complete words for the whole trajectory
			},

               …

            {
				"points": [x1, y1, x2, y2, x3, y3, x4, y4],
				“tracking ID”: "#" ,
				“transcription”: "###",
				“category”: title/caption/scene text,
				“language”: Chinese/English,
				“ID_transcription“:  complete words for the whole trajectory
			}
			],

……

}

Downloads

Training data and the test set can be found from Downloads(Google Drive) Downloads(Baidu Drive)(password:go10).

Table Ranking

Important Announcements: we expand the data size from 1,850 videos to 2,021 videos, causing the performance difference between arxiv paper and the NeurIPS version. Therefore, please refer to the latest arXiv paper, while existing ambiguity.

</tbody>
Method Text Tracking Performance/% End to End Video Text Spotting/% Published at
MOTA MOTP IDP IDR IDF1 MOTA MOTP IDP IDR IDF1
EAST+CRNN -21.6 75.8 29.9 26.5 28.1 -79.3 76.3 6.8 6.9 6.8 -
TransVTSpotter 68.2 82.1 71.0 59.7 64.7 -1.4 82.0 43.6 38.4 40.8 -

Maintenance Plan and Goal

The author will plays an active participant in the video text field and maintaining the dataset at least before 2023 years. And the maintenance plan as the following:

  • Merging and releasing the whole dataset after further review. (Around before November, 2021)
  • Updating evaluation guidance and script code for four tasks(detection, tracking, recognition, and spotting). (Around before November, 2021)
  • Hosting a competition concerning our work for promotional and publicity. (Around before March,2022)

More video-and-language tasks will be supported in our dataset:

  • Text-based Video Retrieval[5] (Around before March,2022)
  • Text-based Video Caption[6] (Around before September,2022)
  • Text-based VQA[7][8] (TED)

TodoList

  • update evaluation metric
  • update data and annotation link
  • update evaluation guidance
  • update Baseline(TransVTSpotter)
  • ...

Citation

@article{wu2021opentext,
  title={A Bilingual, OpenWorld Video Text Dataset and End-to-end Video Text Spotter with Transformer},
  author={Weijia Wu, Debing Zhang, Yuanqiang Cai, Sibo Wang, Jiahong Li, Zhuang Li, Yejun Tang, Hong Zhou},
  journal={35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks},
  year={2021}
}

Organization

Affiliations: Zhejiang University, MMU of Kuaishou Technology

Authors: Weijia Wu(Zhejiang University), Debing Zhang(Kuaishou Technology)

Feedback

Suggestions and opinions of this dataset (both positive and negative) are greatly welcome. Please contact the authors by sending email to [email protected].

License and Copyright

The project is open source under CC-by 4.0 license (see the LICENSE file).

Only for research purpose usage, it is not allowed for commercial purpose usage.

The videos were partially downloaded from YouTube and some may be subject to copyright. We don't own the copyright of those videos and only provide them for non-commercial research purposes only. For each video from YouTube, while we tried to identify video that are licensed under a Creative Commons Attribution license, we make no representations or warranties regarding the license status of each video and you should verify the license for each image yourself.

Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution 4.0 License.

References

[1] Dendorfer, P., Rezatofighi, H., Milan, A., Shi, J., Cremers, D., Reid, I., Roth, S., Schindler, K., & Leal-Taixe, L. (2019). CVPR19 Tracking and Detection Challenge: How crowded can it get?. arXiv preprint arXiv:1906.04567.

[2] Bernardin, K. & Stiefelhagen, R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. Image and Video Processing, 2008(1):1-10, 2008.

[3] Ristani, E., Solera, F., Zou, R., Cucchiara, R. & Tomasi, C. Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. In ECCV workshop on Benchmarking Multi-Target Tracking, 2016.

[4] Li, Y., Huang, C. & Nevatia, R. Learning to associate: HybridBoosted multi-target tracker for crowded scene. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009.

[5] Anand Mishra, Karteek Alahari, and CV Jawahar. Image retrieval using textual cues. In Proceedings of the IEEE International Conference on Computer Vision, pages 3040–3047, 2013.

[6] Oleksii Sidorov, Ronghang Hu, Marcus Rohrbach, and Amanpreet Singh. Textcaps: a dataset for image captioning with reading comprehension. In European Conference on Computer Vision, pages 742–758. Springer, 2020.

[7] Minesh Mathew, Dimosthenis Karatzas, C. V. Jawahar, "DocVQA: A Dataset for VQA on Document Images", arXiv:2007.00398 [cs.CV], WACV 2021

[8] Minesh Mathew, Ruben Tito, Dimosthenis Karatzas, R. Manmatha, C.V. Jawahar, "Document Visual Question Answering Challenge 2020", arXiv:2008.08899 [cs.CV], DAS 2020

Owner
weijiawu
computer version, OCR I am looking for a research intern or visiting chance.
weijiawu
PyTorch implemention of ICCV'21 paper SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation

SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation This is the PyTorch implemention of ICCV'21 paper SGPA: Structure

Chen Kai 24 Dec 05, 2022
Public Implementation of ChIRo from "Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations"

Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations This directory contains the model architectures and experimental

35 Dec 05, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
A parallel framework for population-based multi-agent reinforcement learning.

MALib: A parallel framework for population-based multi-agent reinforcement learning MALib is a parallel framework of population-based learning nested

MARL @ SJTU 348 Jan 08, 2023
Dilated Convolution for Semantic Image Segmentation

Multi-Scale Context Aggregation by Dilated Convolutions Introduction Properties of dilated convolution are discussed in our ICLR 2016 conference paper

Fisher Yu 764 Dec 26, 2022
Rule Based Classification Project

Kural Tabanlı Sınıflandırma ile Potansiyel Müşteri Getirisi Hesaplama İş Problemi: Bir oyun şirketi müşterilerinin bazı özelliklerini kullanaraknseviy

Şafak 1 Jan 12, 2022
Official code for paper "Optimization for Oriented Object Detection via Representation Invariance Loss".

Optimization for Oriented Object Detection via Representation Invariance Loss By Qi Ming, Zhiqiang Zhou, Lingjuan Miao, Xue Yang, and Yunpeng Dong. Th

ming71 56 Nov 28, 2022
Group-Free 3D Object Detection via Transformers

Group-Free 3D Object Detection via Transformers By Ze Liu, Zheng Zhang, Yue Cao, Han Hu, Xin Tong. This repo is the official implementation of "Group-

Ze Liu 213 Dec 07, 2022
Tello Drone Trajectory Tracking

With this library you can track the trajectory of your tello drone or swarm of drones in real time.

Kamran Asgarov 2 Oct 12, 2022
Companion repository to the paper accepted at the 4th ACM SIGSPATIAL International Workshop on Advances in Resilient and Intelligent Cities

Transfer learning approach to bicycle sharing systems station location planning using OpenStreetMap Companion repository to the paper accepted at the

Politechnika Wrocławska - repozytorium dla informatyków 4 Oct 24, 2022
Train Dense Passage Retriever (DPR) with a single GPU

Gradient Cached Dense Passage Retrieval Gradient Cached Dense Passage Retrieval (GC-DPR) - is an extension of the original DPR library. We introduce G

Luyu Gao 92 Jan 02, 2023
Learning Representations that Support Robust Transfer of Predictors

Transfer Risk Minimization (TRM) Code for Learning Representations that Support Robust Transfer of Predictors Prepare the Datasets Preprocess the Scen

Yilun Xu 15 Dec 07, 2022
Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

This is the code associated with the paper Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks, published at CVPR 2020.

Thomas Roddick 219 Dec 20, 2022
Rest API Written In Python To Classify NSFW Images.

Rest API Written In Python To Classify NSFW Images.

Wahyusaputra 2 Dec 23, 2021
Vector.ai assignment

fabio-tests-nisargatman Low Level Approach: ###Tables: continents: id*, name, population, area, createdAt, updatedAt countries: id*, name, population,

Ravi Pullagurla 1 Nov 09, 2021
Bayesian Inference Tools in Python

BayesPy Bayesian Inference Tools in Python Our goal is, given the discrete outcomes of events, estimate the distribution of categories. Using gradient

Max Sklar 99 Dec 14, 2022
Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models

Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models, under review at ICLR 2017 requirements: T

Shuangfei Zhai 18 Mar 05, 2022
Library for 8-bit optimizers and quantization routines.

bitsandbytes Bitsandbytes is a lightweight wrapper around CUDA custom functions, in particular 8-bit optimizers and quantization functions. Paper -- V

Facebook Research 687 Jan 04, 2023
This repository allows the user to automatically scale a 3D model/mesh/point cloud on Agisoft Metashape

Metashape-Utils This repository allows the user to automatically scale a 3D model/mesh/point cloud on Agisoft Metashape, given a set of 2D coordinates

INSCRIBE 4 Nov 07, 2022
This program can detect your face and add an Christams hat on the top of your head

Auto_Christmas This program can detect your face and add a Christmas hat to the top of your head. just run the Auto_Christmas.py, then you can see the

3 Dec 22, 2021