Official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers

Related tags

Deep LearningViP
Overview

Visual Parser (ViP)

This is the official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers.

Visual Parser

Key Features & TLDR

  1. PyTorch Implementation of the ViP network. Check it out at models/vip.py

  2. A fast and neat implementation of the relative positional encoding proposed in HaloNet, BOTNet and AANet.

  3. A transformer-friendly FLOPS & Param counter that supports FLOPS calculation for einsum and matmul operations.

Prerequisite

Please refer to get_started.md.

Results and Models

All models listed below are evaluated with input size 224x224

Model Top1 Acc #params FLOPS Download
ViP-Tiny 79.0 12.8M 1.7G Google Drive
ViP-Small 82.1 32.1M 4.5G Google Drive
ViP-Medium 83.3 49.6M 8.0G Coming Soon
ViP-Base 83.6 87.8M 15.0G Coming Soon

To load the pretrained checkpoint, e.g. ViP-Tiny, simply run:

# first download the checkpoint and name it as vip_t_dict.pth
from models.vip import vip_tiny
model = vip_tiny(pretrained="vip_t_dict.pth")

Evaluation

To evaluate a pre-trained ViP on ImageNet val, run:

python3 main.py <data-root> --model <model-name> -b <batch-size> --eval_checkpoint <path-to-checkpoint>

Training from scratch

To train a ViP on ImageNet from scratch, run:

bash ./distributed_train.sh <job-name> <config-path> <num-gpus>

For example, to train ViP with 8 GPU on a single node, run:

ViP-Tiny:

bash ./distributed_train.sh vip-t-001 configs/vip_t_bs1024.yaml 8

ViP-Small:

bash ./distributed_train.sh vip-s-001 configs/vip_s_bs1024.yaml 8

ViP-Medium:

bash ./distributed_train.sh vip-m-001 configs/vip_m_bs1024.yaml 8

ViP-Base:

bash ./distributed_train.sh vip-b-001 configs/vip_b_bs1024.yaml 8

Profiling the model

To measure the throughput, run:

python3 test_throughput.py <model-name>

For example, if you want to get the test speed of Vip-Tiny on your device, run:

python3 test_throughput.py vip-tiny

To measure the FLOPS and number of parameters, run:

python3 test_flops.py <model-name>

Citing ViP

@article{vip,
  title={Visual Parser: Representing Part-whole Hierarchies with Transformers},
  author={Sun, Shuyang and Yue, Xiaoyu, Bai, Song and Torr, Philip},
  journal={arXiv preprint arXiv:2107.05790},
  year={2021}
}

Contact

If you have any questions, don't hesitate to contact Shuyang (Kevin) Sun. You can easily reach him by sending an email to [email protected].

Owner
Shuyang Sun
DPhil (PhD) student at Oxford
Shuyang Sun
Remote sensing change detection using PaddlePaddle

Change Detection Laboratory Developing and benchmarking deep learning-based remo

Lin Manhui 15 Sep 23, 2022
Animatable Neural Radiance Fields for Modeling Dynamic Human Bodies

To make the comparison with Animatable NeRF easier on the Human3.6M dataset, we save the quantitative results at here, which also contains the results of other methods, including Neural Body, D-NeRF,

ZJU3DV 359 Jan 08, 2023
Official PyTorch implementation of "IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos", CVPRW 2021

IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos Introduction This repo is official PyTorch implementatio

Gyeongsik Moon 29 Sep 24, 2022
Bib-parser - Convenient script to parse .bib files with the ACM Digital Library like metadata

Bib Parser Convenient script to parse .bib files with the ACM Digital Library li

Mehtab Iqbal (Shahan) 1 Jan 26, 2022
The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.

SuperGen The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding. Requirements Before running, you

Yu Meng 38 Dec 12, 2022
My 1st place solution at Kaggle Hotel-ID 2021

1st place solution at Kaggle Hotel-ID My 1st place solution at Kaggle Hotel-ID to Combat Human Trafficking 2021. https://www.kaggle.com/c/hotel-id-202

Kohei Ozaki 18 Aug 19, 2022
⚡️Optimizing einsum functions in NumPy, Tensorflow, Dask, and more with contraction order optimization.

Optimized Einsum Optimized Einsum: A tensor contraction order optimizer Optimized einsum can significantly reduce the overall execution time of einsum

Daniel Smith 653 Dec 30, 2022
Wordplay, an artificial Intelligence based crossword puzzle solver.

Wordplay, AI based crossword puzzle solver A crossword is a word puzzle that usually takes the form of a square or a rectangular grid of white- and bl

Vaibhaw 4 Nov 16, 2022
Waymo motion prediction challenge 2021: 3rd place solution

Waymo motion prediction challenge 2021: 3rd place solution 📜 Technical report 🗨️ Presentation 🎉 Announcement 🛆Motion Prediction Channel Website 🛆

158 Jan 08, 2023
PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning"

PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning".

Berivan Isik 8 Dec 08, 2022
ScriptProfilerPy - Module to visualize where your python script is slow

ScriptProfiler helps you track where your code is slow It provides: Code lines t

Lucas BLP 3 Jun 02, 2022
Create images and texts with the First Order Generative Adversarial Networks

First Order Divergence for training GANs This repository contains code accompanying the paper First Order Generative Advesarial Netoworks The majority

Zalando Research 35 Dec 11, 2021
A library for using chemistry in your applications

Chemistry in python Resources Used The following items are not made by me! Click the words to go to the original source Periodic Tab Json - Used in -

Tech Penguin 28 Dec 17, 2021
FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective

FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective Official implementation of "FL-WBC: Enhan

Jingwei Sun 26 Nov 28, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
[CVPR2022] Representation Compensation Networks for Continual Semantic Segmentation

RCIL [CVPR2022] Representation Compensation Networks for Continual Semantic Segmentation Chang-Bin Zhang1, Jia-Wen Xiao1, Xialei Liu1, Ying-Cong Chen2

Chang-Bin Zhang 71 Dec 28, 2022
CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer

CSAW-M This repository contains code for CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer. Source code for tr

Yue Liu 7 Oct 11, 2022
Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder

ASEGAN: Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder 中文版简介 Readme with English Version 介绍 基于SEGAN模型的改进版本,使用自主设计的非

Nitin 53 Nov 17, 2022
✨✨✨An awesome open source toolbox for stereo matching.

OpenStereo This is an awesome open source toolbox for stereo matching. Supported Methods: BM SGM(T-PAMI'07) GCNet(ICCV'17) PSMNet(CVPR'18) StereoNet(E

Wang Qingyu 6 Nov 04, 2022
Code for our CVPR2021 paper coordinate attention

Coordinate Attention for Efficient Mobile Network Design (preprint) This repository is a PyTorch implementation of our coordinate attention (will appe

Qibin (Andrew) Hou 726 Jan 05, 2023