An example to implement a new backbone with OpenMMLab framework.

Overview

Backbone example on OpenMMLab framework

English | 简体中文

Introduction

This is an template repo about how to use OpenMMLab framework to develop a new backbone for multiple vision tasks.

With OpenMMLab framework, you can easily develop a new backbone and use MMClassification, MMDetection and MMSegmentation to benchmark your backbone on classification, detection and segmentation tasks.

Setup environment

It requires PyTorch and the following OpenMMLab packages:

  • MIM: A command-line tool to manage OpenMMLab packages and experiments.
  • MMCV: OpenMMLab foundational library for computer vision.
  • MMClassification: OpenMMLab image classification toolbox and benchmark. Besides classification, it's also a repository to store various backbones.
  • MMDetection: OpenMMLab detection toolbox and benchmark.
  • MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark.

Assume you have prepared your Python and PyTorch environment, just use the following command to setup the environment.

pip install openmim mmcls mmdet mmsegmentation
mim install mmcv-full

Data preparation

The data structure looks like below:

data/
├── imagenet
│   ├── train
│   ├── val
│   └── meta
│       ├── train.txt
│       └── val.txt
├── ade
│   └── ADEChallengeData2016
│       ├── annotations
│       └── images
└── coco
    ├── annotations
    │   ├── instance_train2017.json
    │   └── instance_val2017.json
    ├── train2017
    └── val2017

Here, we only list the minimal files for training and validation on ImageNet (classification), ADE20K (segmentation) and COCO (object detection).

If you want benchmark on more datasets or tasks, for example, panoptic segmentation with MMDetection, just organize your dataset according to MMDetection's requirements. For semantic segmentation task, you can organize your dataset according to this tutorial

Usage

Implement your backbone

In this example repository, we use the ConvNeXt as an example to show how to implement a backbone quickly.

  1. Create your backbone file and put it in the models folder. In this example, models/convnext.py.

    In this file, just implement your backbone with PyTorch with two modifications:

    1. The backbone and modules should inherits mmcv.runner.BaseModule. The BaseModule is almost the same as the torch.nn.Module, and supports using init_cfg to specify the initizalization method includes pre-trained model.

    2. Use one-line decorator as below to register the backbone class to the mmcls.models.BACKBONES registry.

      @BACKBONES.register_module(force=True)

      What is registry? Have a look at here!

  2. [Optional] If you want to add some extra components for specific task, you can also add it refers to models/det/layer_decay_optimizer_constructor.py.

  3. Add your backbone class and custom components to models/__init__.py.

Create config files

Add your config files for each task to configs/. If your are not familiar with config files, the tutorial can help you.

In a word, use base config files of model, dataset, schedule and runtime to compose your config files. Of course, you can also override some settings of base config in your config files, even write all settings in one file.

In this template, we provide a suit of popular base config files, you can also find more useful base configs from mmcls, mmdet and mmseg.

Training and testing

For training and testing, you can directly use mim to train and test the model

At first, you need to add the current folder the the PYTHONPATH, so that Python can find your model files.

export PYTHONPATH=`pwd`:$PYTHONPATH 

On local single GPU:

# train classification models
mim train mmcls $CONFIG --work-dir $WORK_DIR

# test classification models
mim test mmcls $CONFIG -C $CHECKPOINT --metrics accuracy --metric-options "topk=(1, 5)"

# train object detection / instance segmentation models
mim train mmdet $CONFIG --work-dir $WORK_DIR

# test object detection / instance segmentation models
mim test mmdet $CONFIG -C $CHECKPOINT --eval bbox segm

# train semantic segmentation models
mim train mmseg $CONFIG --work-dir $WORK_DIR

# test semantic segmentation models
mim test mmseg $CONFIG -C $CHECKPOINT --eval mIoU
  • CONFIG: the config files under the directory configs/
  • WORK_DIR: the working directory to save configs, logs, and checkpoints
  • CHECKPOINT: the path of the checkpoint downloaded from our model zoo or trained by yourself

On multiple GPUs (4 GPUs here):

# train classification models
mim train mmcls $CONFIG --work-dir $WORK_DIR --launcher pytorch --gpus 4

# test classification models
mim test mmcls $CONFIG -C $CHECKPOINT --metrics accuracy --metric-options "topk=(1, 5)" --launcher pytorch --gpus 4

# train object detection / instance segmentation models
mim train mmdet $CONFIG --work-dir $WORK_DIR --launcher pytorch --gpus 4

# test object detection / instance segmentation models
mim test mmdet $CONFIG -C $CHECKPOINT --eval bbox segm --launcher pytorch --gpus 4

# train semantic segmentation models
mim train mmseg $CONFIG --work-dir $WORK_DIR --launcher pytorch --gpus 4 

# test semantic segmentation models
mim test mmseg $CONFIG -C $CHECKPOINT --eval mIoU --launcher pytorch --gpus 4
  • CONFIG: the config files under the directory configs/
  • WORK_DIR: the working directory to save configs, logs, and checkpoints
  • CHECKPOINT: the path of the checkpoint downloaded from our model zoo or trained by yourself

On multiple GPUs in multiple nodes with Slurm (total 16 GPUs here):

# train classification models
mim train mmcls $CONFIG --work-dir $WORK_DIR --launcher slurm --gpus 16 --gpus-per-node 8 --partition $PARTITION

# test classification models
mim test mmcls $CONFIG -C $CHECKPOINT --metrics accuracy --metric-options "topk=(1, 5)" --launcher slurm --gpus 16 --gpus-per-node 8 --partition $PARTITION

# train object detection / instance segmentation models
mim train mmdet $CONFIG --work-dir $WORK_DIR --launcher slurm --gpus 16 --gpus-per-node 8 --partition $PARTITION

# test object detection / instance segmentation models
mim test mmdet $CONFIG -C $CHECKPOINT --eval bbox segm --launcher slurm --gpus 16 --gpus-per-node 8 --partition $PARTITION

# train semantic segmentation models
mim train mmseg $CONFIG --work-dir $WORK_DIR --launcher slurm --gpus 16 --gpus-per-node 8 --partition $PARTITION

# test semantic segmentation models
mim test mmseg $CONFIG -C $CHECKPOINT --eval mIoU --launcher slurm --gpus 16 --gpus-per-node 8 --partition $PARTITION
  • CONFIG: the config files under the directory configs/
  • WORK_DIR: the working directory to save configs, logs, and checkpoints
  • CHECKPOINT: the path of the checkpoint downloaded from our model zoo or trained by yourself
  • PARTITION: the slurm partition you are using
Owner
Ma Zerun
Ma Zerun
My coursework for Machine Learning (2021 Spring) at National Taiwan University (NTU)

Machine Learning 2021 Machine Learning (NTU EE 5184, Spring 2021) Instructor: Hung-yi Lee Course Website : (https://speech.ee.ntu.edu.tw/~hylee/ml/202

100 Dec 26, 2022
PyTorch implementation of Octave Convolution with pre-trained Oct-ResNet and Oct-MobileNet models

octconv.pytorch PyTorch implementation of Octave Convolution in Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octa

Duo Li 273 Dec 18, 2022
PyTorch Implementation of DSB for Score Based Generative Modeling. Experiments managed using Hydra.

Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling This repository contains the implementation for the paper Diffusion

James Thornton 50 Jan 03, 2023
Complete the code of prefix-tuning in low data setting

Prefix Tuning Note: 作者在论文中提到使用真实的word去初始化prefix的操作(Initializing the prefix with activations of real words,significantly improves generation)。我在使用作者提供的

Andrew Zeng 4 Jul 11, 2022
CR-Fill: Generative Image Inpainting with Auxiliary Contextual Reconstruction. ICCV 2021

crfill Usage | Web App | | Paper | Supplementary Material | More results | code for paper ``CR-Fill: Generative Image Inpainting with Auxiliary Contex

182 Dec 20, 2022
Implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

PRP Introduction This is the implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

yuanyao366 39 Dec 29, 2022
Official Implementation of PCT

Official Implementation of PCT Prerequisites python == 3.8.5 Please make sure you have the following libraries installed: numpy torch=1.4.0 torchvisi

32 Nov 21, 2022
GAN-based 3D human pose estimation model for 3DV'17 paper

Tensorflow implementation for 3DV 2017 conference paper "Adversarially Parameterized Optimization for 3D Human Pose Estimation". @inproceedings{jack20

Dominic Jack 15 Feb 27, 2021
A repository with exploration into using transformers to predict DNA ↔ transcription factor binding

Transcription Factor binding predictions with Attention and Transformers A repository with exploration into using transformers to predict DNA ↔ transc

Phil Wang 62 Dec 20, 2022
Hough Transform and Hough Line Transform Using OpenCV

Hough transform is a feature extraction method for detecting simple shapes such as circles, lines, etc in an image. Hough Transform and Hough Line Transform is implemented in OpenCV with two methods;

Happy N. Monday 3 Feb 15, 2022
Deploy optimized transformer based models on Nvidia Triton server

Deploy optimized transformer based models on Nvidia Triton server

Lefebvre Sarrut Services 1.2k Jan 05, 2023
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang News 2021.12.5 Release Deep

145 Jan 05, 2023
This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities

MLOps with Vertex AI This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities. The ex

Google Cloud Platform 238 Dec 21, 2022
[ICLR2021oral] Rethinking Architecture Selection in Differentiable NAS

DARTS-PT Code accompanying the paper ICLR'2021: Rethinking Architecture Selection in Differentiable NAS Ruochen Wang, Minhao Cheng, Xiangning Chen, Xi

Ruochen Wang 86 Dec 27, 2022
Self-supervised learning on Graph Representation Learning (node-level task)

graph_SSL Self-supervised learning on Graph Representation Learning (node-level task) How to run the code To run GRACE, sh run_GRACE.sh To run GCA, sh

Namkyeong Lee 3 Dec 31, 2021
[AAAI 2022] Sparse Structure Learning via Graph Neural Networks for Inductive Document Classification

Sparse Structure Learning via Graph Neural Networks for inductive document classification Make graph dataset create co-occurrence graph for datasets.

16 Dec 22, 2022
Bald-to-Hairy Translation Using CycleGAN

GANiry: Bald-to-Hairy Translation Using CycleGAN Official PyTorch implementation of GANiry. GANiry: Bald-to-Hairy Translation Using CycleGAN, Fidan Sa

Fidan Samet 10 Oct 27, 2022
DeepMind Alchemy task environment: a meta-reinforcement learning benchmark

The DeepMind Alchemy environment is a meta-reinforcement learning benchmark that presents tasks sampled from a task distribution with deep underlying structure.

DeepMind 188 Dec 25, 2022
Einshape: DSL-based reshaping library for JAX and other frameworks.

Einshape: DSL-based reshaping library for JAX and other frameworks. The jnp.einsum op provides a DSL-based unified interface to matmul and tensordot o

DeepMind 62 Nov 30, 2022
this is a lite easy to use virtual keyboard project for anyone to use

virtual_Keyboard this is a lite easy to use virtual keyboard project for anyone to use motivation I made this for this year's recruitment for RobEn AA

Mohamed Emad 3 Oct 23, 2021