Self-supervised Augmentation Consistency for Adapting Semantic Segmentation (CVPR 2021)

Related tags

Deep Learningda-sac
Overview

Self-supervised Augmentation Consistency
for Adapting Semantic Segmentation

License PyTorch

This repository contains the official implementation of our paper:

Self-supervised Augmentation Consistency for Adapting Semantic Segmentation
Nikita Araslanov and Stefan Roth
To appear at CVPR 2021. [arXiv preprint]

drawing

We obtain state-of-the-art accuracy of adapting semantic
segmentation by enforcing consistency across photometric
and similarity transformations. We use neither style transfer
nor adversarial training.

Contact: Nikita Araslanov fname.lname (at) visinf.tu-darmstadt.de


Installation

Requirements. To reproduce our results, we recommend Python >=3.6, PyTorch >=1.4, CUDA >=10.0. At least two Titan X GPUs (12Gb) or equivalent are required for VGG-16; ResNet-101 and VGG-16/FCN need four.

  1. create conda environment:
conda create --name da-sac
source activate da-sac
  1. install PyTorch >=1.4 (see PyTorch instructions). For example,
conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch
  1. install the dependencies:
pip install -r requirements.txt
  1. download data (Cityscapes, GTA5, SYNTHIA) and create symlinks in the ./data folder, as follows:
./data/cityscapes -> <symlink to Cityscapes>
./data/cityscapes/gtFine2/
./data/cityscapes/leftImg8bit/

./data/game -> <symlink to GTA>
./data/game/labels_cs
./data/game/images

./data/synthia  -> <symlink to SYNTHIA>
./data/synthia/labels_cs
./data/synthia/RGB

Note that all ground-truth label IDs (Cityscapes, GTA5 and SYNTHIA) should be converted to Cityscapes train IDs. The label directories in the above example (gtFine2, labels_cs) therefore refer not to the original labels, but to these converted semantic maps.

Training

Training from ImageNet initialisation proceeds in three steps:

  1. Training the baseline (ABN)
  2. Generating the weights for importance sampling
  3. Training with augmentation consistency from the ABN baseline

1. Training the baseline (ABN)

Here the input are ImageNet models available from the official PyTorch repository. We provide the links to those models for convenience.

Backbone Link
ResNet-101 resnet101-5d3b4d8f.pth (171M)
VGG-16 vgg16_bn-6c64b313.pth (528M)

By default, these models should be placed in ./models/pretrained/ (though configurable with MODEL.INIT_MODEL).

To run the training

bash ./launch/train.sh [gta|synthia] [resnet101|vgg16|vgg16fcn] base

where the first argument specifies the source domain, the second determines the network architecture. The third argument base instructs to run the training of the baseline.

If you would like to skip this step, you can use our pre-trained models:

Source domain: GTA5

Backbone Arch. IoU (val) Link MD5
ResNet-101 DeepLabv2 40.8 baseline_abn_e040.pth (336M) 9fe17[...]c11fc
VGG-16 DeepLabv2 37.1 baseline_abn_e115.pth (226M) d4ffc[...]ef755
VGG-16 FCN 36.7 baseline_abn_e040.pth (1.1G) aa2e9[...]bae53

Source domain: SYNTHIA

Backbone Arch. IoU (val) Link MD5
ResNet-101 DeepLabv2 36.3 baseline_abn_e090.pth (336M) b3431[...]d1a83
VGG-16 DeepLabv2 34.4 baseline_abn_e070.pth (226M) 3af24[...]5b24e
VGG-16 FCN 31.6 baseline_abn_e040.pth (1.1G) 5f457[...]e4b3a

Tip: You can download these files (as well as the final models below) with tools/download_baselines.sh:

cp tools/download_baselines.sh snapshots/cityscapes/baselines/
cd snapshots/cityscapes/baselines/
bash ./download_baselines.sh

2. Generating weights for importance sampling

To generate the weights you need to

  1. generate mask predictions with your baseline (see inference below);
  2. run tools/compute_image_weights.py that reads in those predictions and counts the predictions per each class.

If you would like to skip this step, you can use our weights we computed for the ABN baselines above:

Backbone Arch. Source: GTA5 Source: SYNTHIA
ResNet-101 DeepLabv2 cs_weights_resnet101_gta.data cs_weights_resnet101_synthia.data
VGG-16 DeepLabv2 cs_weights_vgg16_gta.data cs_weights_vgg16_synthia.data
VGG-16 FCN cs_weights_vgg16fcn_gta.data cs_weights_vgg16fcn_synthia.data

Tip: The bash script data/download_weights.sh will download all these importance sampling weights in the current directory.

3. Training with augmentation consistency

To train the model with augmentation consistency, we use the same shell script as in step 1, but without the argument base:

bash ./launch/train.sh [gta|synthia] [resnet101|vgg16|vgg16fcn]

Make sure to specify your baseline snapshot with RESUME bash variable set in the environment (export RESUME=...) or directly in the shell script (commented out by default).

We provide our final models for download.

Source domain: GTA5

Backbone Arch. IoU (val) IoU (test) Link MD5
ResNet-101 DeepLabv2 53.8 55.7 final_e136.pth (504M) 59c16[...]5a32f
VGG-16 DeepLabv2 49.8 51.0 final_e184.pth (339M) 0accb[...]d5881
VGG-16 FCN 49.9 50.4 final_e112.pth (1.6G) e69f8[...]f729b

Source domain: SYNTHIA

Backbone Arch. IoU (val) IoU (test) Link MD5
ResNet-101 DeepLabv2 52.6 52.7 final_e164.pth (504M) a7682[...]db742
VGG-16 DeepLabv2 49.1 48.3 final_e164.pth (339M) c5b31[...]5fdb7
VGG-16 FCN 46.8 45.8 final_e098.pth (1.6G) efb74[...]845cc

Inference and evaluation

Inference

To run single-scale inference from your snapshot, use infer_val.py. The bash script launch/infer_val.sh provides an easy way to run the inference by specifying a few variables:

# validation/training set
FILELIST=[val_cityscapes|train_cityscapes] 
# configuration used for training
CONFIG=configs/[deeplabv2_vgg16|deeplab_resnet101|fcn_vgg16]_train.yaml
# the following 3 variables effectively specify the path to the snapshot
EXP=...
RUN_ID=...
SNAPSHOT=...
# the snapshot path is defined as
# SNAPSHOT_PATH=snapshots/cityscapes/${EXP}/${RUN_ID}/${SNAPSHOT}.pth

Evaluation

Please use the Cityscapes' official evaluation tool evalPixelLevelSemanticLabeling from Cityscapes scripts for evaluating your results.

Citation

We hope you find our work useful. If you would like to acknowledge it in your project, please use the following citation:

@inproceedings{Araslanov:2021:DASAC,
  title     = {Self-supervised Augmentation Consistency for Adapting Semantic Segmentation},
  author    = {Araslanov, Nikita and and Roth, Stefan},
  booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year = {2021}
}
Owner
Visual Inference Lab @TU Darmstadt
Visual Inference Lab @TU Darmstadt
A PyTorch-centric hybrid classical-quantum machine learning framework

torchquantum A PyTorch-centric hybrid classical-quantum dynamic neural networks framework. News Add a simple example script using quantum gates to do

MIT HAN Lab 400 Jan 02, 2023
Densely Connected Convolutional Networks, In CVPR 2017 (Best Paper Award).

Densely Connected Convolutional Networks (DenseNets) This repository contains the code for DenseNet introduced in the following paper Densely Connecte

Zhuang Liu 4.5k Jan 03, 2023
Blender scripts for computing geodesic distance

GeoDoodle Geodesic distance computation for Blender meshes Table of Contents Overivew Usage Implementation Overview This addon provides an operator fo

20 Jun 08, 2022
General purpose Slater-Koster tight-binding code for electronic structure calculations

tight-binder Introduction General purpose tight-binding code for electronic structure calculations based on the Slater-Koster approximation. The code

9 Dec 15, 2022
A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow.

ConvNeXt A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow. A FacebookResearch Implementation on A Conv

Raghvender 2 Feb 14, 2022
Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Demetri Pananos 9 Oct 04, 2022
🛰️ List of earth observation companies and job sites

Earth Observation Companies & Jobs source Portals & Jobs Geospatial Geospatial jobs newsletter: ~biweekly newsletter with geospatial jobs by Ali Ahmad

Dahn 64 Dec 27, 2022
A PaddlePaddle version image model zoo.

Paddle-Image-Models English | 简体中文 A PaddlePaddle version image model zoo. Install Package Install by pip: $ pip install ppim Install by wheel package

AgentMaker 131 Dec 07, 2022
Yolox-bytetrack-sample - Python sample of MOT (Multiple Object Tracking) using YOLOX and ByteTrack

yolox-bytetrack-sample YOLOXとByteTrackを用いたMOT(Multiple Object Tracking)のPythonサン

KazuhitoTakahashi 12 Nov 09, 2022
DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection

DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection Code for our Paper DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Obje

Steven Lang 58 Dec 19, 2022
(CVPR 2022) Energy-based Latent Aligner for Incremental Learning

Energy-based Latent Aligner for Incremental Learning Accepted to CVPR 2022 We illustrate an Incremental Learning model trained on a continuum of tasks

Joseph K J 37 Jan 03, 2023
Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Muhammad Maaz 206 Jan 04, 2023
ZeroVL - The official implementation of ZeroVL

This repository contains source code necessary to reproduce the results presente

31 Nov 04, 2022
TensorRT examples (Jetson, Python/C++)(object detection)

TensorRT examples (Jetson, Python/C++)(object detection)

Nobuo Tsukamoto 53 Dec 22, 2022
CoRe: Contrastive Recurrent State-Space Models

CoRe: Contrastive Recurrent State-Space Models This code implements the CoRe model and reproduces experimental results found in Robust Robotic Control

Apple 21 Aug 11, 2022
Starter code for the ICCV 2021 paper, 'Detecting Invisible People'

Detecting Invisible People [ICCV 2021 Paper] [Website] Tarasha Khurana, Achal Dave, Deva Ramanan Introduction This repository contains code for Detect

Tarasha Khurana 28 Sep 16, 2022
A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images

BaSiC Matlab code accompanying A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images by Tingying Peng, Kurt Thorn, Timm Schr

Marr Lab 34 Dec 18, 2022
A Marvelous ChatBot implement using PyTorch.

PyTorch Marvelous ChatBot [Update] it's 2019 now, previously model can not catch up state-of-art now. So we just move towards the future a transformer

JinTian 223 Oct 18, 2022
Code for "Universal inference meets random projections: a scalable test for log-concavity"

How to use this repository This repository contains code to replicate the results of "Universal inference meets random projections: a scalable test fo

Robin Dunn 0 Nov 21, 2021
Weakly Supervised Text-to-SQL Parsing through Question Decomposition

Weakly Supervised Text-to-SQL Parsing through Question Decomposition The official repository for the paper "Weakly Supervised Text-to-SQL Parsing thro

14 Dec 19, 2022