Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination

Overview

Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination (ICCV 2021)

스크린샷 2021-08-21 오후 3 30 22

Dataset License

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

About

[Project site] [Arxiv] [Download Dataset] [Video]

This is an official repository of "Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination", which is accepted as a poster in ICCV 2021.

This repository provides

  1. Preprocessing code of "Large Scale Multi Illuminant (LSMI) Dataset"
  2. Code of Pixel-level illumination inference U-Net
  3. Pre-trained model parameter for testing U-Net

Requirements

Our running environment is as follows:

  • Python version 3.8.3
  • Pytorch version 1.7.0
  • CUDA version 11.2

We provide a docker image, which supports all extra requirements (ex. dcraw,rawpy,tensorboard...), including specified version of python, pytorch, CUDA above.

You can download the docker image here.

The following instructions are assumed to run in a docker container that uses the docker image we provided.

Getting Started

Clone this repo

In the docker container, clone this repository first.

git clone https://github.com/DY112/LSMI-dataset.git

Download the LSMI dataset

You should first download the LSMI dataset from here.

The dataset is composed of 3 sub-folers named "galaxy", "nikon", "sony".

Folders named by each camera include several scenes, and each scene folder contains full-resolution RAW files and JPG files that is converted to sRGB color space.

Move all three folders to the root of cloned repository.

Preprocess the LSMI dataset

  1. Convert raw images to tiff files

    To convert original 1-channel bayer-pattern images to 3-channel RGB tiff images, run following code:

    python 0_cvt2tiff.py

    You should modify SOURCE and EXT variables properly.

    The converted tiff files are generated at the same location as the source file.

  2. Make mixture map

    python 1_make_mixture_map.py

    Change the CAMERA variable properly to the target directory you want.

    .npy tpye mixture map data will be generated at each scene's directory.

  3. Crop

    python 2_preprocess_data.py

    The image and the mixture map are resized as a square with a length of the SIZE variable inside the code, and the ground-truth image is also generated.

    We set the size to 256 to test the U-Net, and 512 for train the U-Net.

    Here, to test the pre-trained U-Net, set size to 256.

    The new dataset is created in a folder with the name of the CAMERA_SIZE. (Ex. galaxy_256)

Use U-Net for pixel-level AWB

You can download pre-trained model parameter here.

Pre-trained model is trained on 512x512 data with random crop & random pixel level relighting augmentation method.

Locate downloaded models folder into SVWB_Unet.

  • Test U-Net

    cd SVWB_Unet
    sh test.sh
  • Train U-Net

    cd SVWB_Unet
    sh train.sh
Owner
DongYoung Kim
Research Assistant of CIPLAB
DongYoung Kim
Code repo for "Towards Interpretable Deep Networks for Monocular Depth Estimation" paper.

InterpretableMDE A PyTorch implementation for "Towards Interpretable Deep Networks for Monocular Depth Estimation" paper. arXiv link: https://arxiv.or

Zunzhi You 16 Aug 12, 2022
Emotional conditioned music generation using transformer-based model.

This is the official repository of EMOPIA: A Multi-Modal Pop Piano Dataset For Emotion Recognition and Emotion-based Music Generation. The paper has b

hung anna 96 Nov 09, 2022
RL algorithm PPO and IRL algorithm AIRL written with Tensorflow.

RL algorithm PPO and IRL algorithm AIRL written with Tensorflow. They have a parallel sampling feature in order to increase computation speed (especially in high-performance computing (HPC)).

Fangjian Li 3 Dec 28, 2021
LabelImg is a graphical image annotation tool.

LabelImgPlus LabelImg is a graphical image annotation tool. This project is not updated with new functions now. More functions are supported with Labe

lzx1413 200 Dec 20, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration (NeurIPS 2021) PyTorch implementation of the paper: CoFiNet: Reli

76 Jan 03, 2023
Training data extraction on GPT-2

Training data extraction from GPT-2 This repository contains code for extracting training data from GPT-2, following the approach outlined in the foll

Florian Tramer 62 Dec 07, 2022
The comma.ai Calibration Challenge!

Welcome to the comma.ai Calibration Challenge! Your goal is to predict the direction of travel (in camera frame) from provided dashcam video. This rep

comma.ai 697 Jan 05, 2023
CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped

CSWin-Transformer This repo is the official implementation of "CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows". Th

Microsoft 409 Jan 06, 2023
Optimized code based on M2 for faster image captioning training

Transformer Captioning This repository contains the code for Transformer-based image captioning. Based on meshed-memory-transformer, we further optimi

lyricpoem 16 Dec 16, 2022
Does Pretraining for Summarization Reuqire Knowledge Transfer?

Pretraining summarization models using a corpus of nonsense

Approximately Correct Machine Intelligence (ACMI) Lab 12 Dec 19, 2022
FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation.

FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation [Project] [Paper] [arXiv] [Home] Official implementation of FastFCN:

Wu Huikai 815 Dec 29, 2022
Code for paper "ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation"

ASAP-Net This project implements ASAP-Net of paper ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation (BMVC2020). Overview We i

Hanwen Cao 26 Aug 25, 2022
Learning Intents behind Interactions with Knowledge Graph for Recommendation, WWW2021

Learning Intents behind Interactions with Knowledge Graph for Recommendation This is our PyTorch implementation for the paper: Xiang Wang, Tinglin Hua

158 Dec 15, 2022
Cleaned up code for DSTC 10: SIMMC 2.0 track: subtask 2: multimodal coreference resolution

UNITER-Based Situated Coreference Resolution with Rich Multimodal Input: arXiv MMCoref_cleaned Code for the MMCoref task of the SIMMC 2.0 dataset. Pre

Yichen (William) Huang 2 Dec 05, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

causal-bald | Abstract | Installation | Example | Citation | Reproducing Results DUE An implementation of the methods presented in Causal-BALD: Deep B

OATML 13 Oct 07, 2022
[ICLR 2021, Spotlight] Large Scale Image Completion via Co-Modulated Generative Adversarial Networks

Large Scale Image Completion via Co-Modulated Generative Adversarial Networks, ICLR 2021 (Spotlight) Demo | Paper [NEW!] Time to play with our interac

Shengyu Zhao 373 Jan 02, 2023
Deep-learning-roadmap - All You Need to Know About Deep Learning - A kick-starter

Deep Learning - All You Need to Know Sponsorship To support maintaining and upgrading this project, please kindly consider Sponsoring the project deve

Instill AI 4.4k Dec 26, 2022
Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

4 Mar 11, 2022
A basic neural network for image segmentation.

Unet_erythema_detection A basic neural network for image segmentation. 前期准备 1.在logs文件夹中下载h5权重文件,百度网盘链接在logs文件夹中 2.将所有原图 放置在“/dataset_1/JPEGImages/”文件夹

1 Jan 16, 2022