Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination

Overview

Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination (ICCV 2021)

스크린샷 2021-08-21 오후 3 30 22

Dataset License

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

About

[Project site] [Arxiv] [Download Dataset] [Video]

This is an official repository of "Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination", which is accepted as a poster in ICCV 2021.

This repository provides

  1. Preprocessing code of "Large Scale Multi Illuminant (LSMI) Dataset"
  2. Code of Pixel-level illumination inference U-Net
  3. Pre-trained model parameter for testing U-Net

Requirements

Our running environment is as follows:

  • Python version 3.8.3
  • Pytorch version 1.7.0
  • CUDA version 11.2

We provide a docker image, which supports all extra requirements (ex. dcraw,rawpy,tensorboard...), including specified version of python, pytorch, CUDA above.

You can download the docker image here.

The following instructions are assumed to run in a docker container that uses the docker image we provided.

Getting Started

Clone this repo

In the docker container, clone this repository first.

git clone https://github.com/DY112/LSMI-dataset.git

Download the LSMI dataset

You should first download the LSMI dataset from here.

The dataset is composed of 3 sub-folers named "galaxy", "nikon", "sony".

Folders named by each camera include several scenes, and each scene folder contains full-resolution RAW files and JPG files that is converted to sRGB color space.

Move all three folders to the root of cloned repository.

Preprocess the LSMI dataset

  1. Convert raw images to tiff files

    To convert original 1-channel bayer-pattern images to 3-channel RGB tiff images, run following code:

    python 0_cvt2tiff.py

    You should modify SOURCE and EXT variables properly.

    The converted tiff files are generated at the same location as the source file.

  2. Make mixture map

    python 1_make_mixture_map.py

    Change the CAMERA variable properly to the target directory you want.

    .npy tpye mixture map data will be generated at each scene's directory.

  3. Crop

    python 2_preprocess_data.py

    The image and the mixture map are resized as a square with a length of the SIZE variable inside the code, and the ground-truth image is also generated.

    We set the size to 256 to test the U-Net, and 512 for train the U-Net.

    Here, to test the pre-trained U-Net, set size to 256.

    The new dataset is created in a folder with the name of the CAMERA_SIZE. (Ex. galaxy_256)

Use U-Net for pixel-level AWB

You can download pre-trained model parameter here.

Pre-trained model is trained on 512x512 data with random crop & random pixel level relighting augmentation method.

Locate downloaded models folder into SVWB_Unet.

  • Test U-Net

    cd SVWB_Unet
    sh test.sh
  • Train U-Net

    cd SVWB_Unet
    sh train.sh
Owner
DongYoung Kim
Research Assistant of CIPLAB
DongYoung Kim
Code for "Causal autoregressive flows" - AISTATS, 2021

Code for "Causal Autoregressive Flow" This repository contains code to run and reproduce experiments presented in Causal Autoregressive Flows, present

Ricardo Pio Monti 35 Dec 16, 2022
UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus

UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus General info This is

71 Oct 25, 2022
Kaggle | 9th place single model solution for TGS Salt Identification Challenge

UNet for segmenting salt deposits from seismic images with PyTorch. General We, tugstugi and xuyuan, have participated in the Kaggle competition TGS S

Erdene-Ochir Tuguldur 276 Dec 20, 2022
Codebase for Inducing Causal Structure for Interpretable Neural Networks

Interchange Intervention Training (IIT) Codebase for Inducing Causal Structure for Interpretable Neural Networks Release Notes 12/01/2021: Code and Pa

Zen 6 Oct 10, 2022
基于pytorch构建cyclegan示例

cyclegan-demo 基于Pytorch构建CycleGAN示例 如何运行 准备数据集 将数据集整理成4个文件,分别命名为 trainA, trainB:训练集,A、B代表两类图片 testA, testB:测试集,A、B代表两类图片 例如 D:\CODE\CYCLEGAN-DEMO\DATA

Koorye 3 Oct 18, 2022
Location-Sensitive Visual Recognition with Cross-IOU Loss

The trained models are temporarily unavailable, but you can train the code using reasonable computational resource. Location-Sensitive Visual Recognit

Kaiwen Duan 146 Dec 25, 2022
Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices

Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices Abstract For practical deep neural network design on mobile devices, it is e

11 Dec 30, 2022
DIVeR: Deterministic Integration for Volume Rendering

DIVeR: Deterministic Integration for Volume Rendering This repo contains the training and evaluation code for DIVeR. Setup python 3.8 pytorch 1.9.0 py

64 Dec 27, 2022
Code for CVPR2021 paper 'Where and What? Examining Interpretable Disentangled Representations'.

PS-SC GAN This repository contains the main code for training a PS-SC GAN (a GAN implemented with the Perceptual Simplicity and Spatial Constriction c

Xinqi/Steven Zhu 40 Dec 16, 2022
Evaluation framework for testing segmentation networks in PyTorch

Evaluation framework for testing segmentation networks in PyTorch. What segmentation network to choose for next Kaggle competition? This benchmark knows the answer!

Eugene Khvedchenya 37 Apr 27, 2022
Bio-OFC gym implementation and Gym-Fly environment

Bio-OFC gym implementation and Gym-Fly environment This repository includes the gym compatible implementation of the Bio-OFC algorithm from the paper

Siavash Golkar 1 Nov 16, 2021
HyperaPy: An automatic hyperparameter optimization framework ⚡🚀

hyperpy HyperPy: An automatic hyperparameter optimization framework Description HyperPy: Library for automatic hyperparameter optimization. Build on t

Sergio Mora 7 Sep 06, 2022
This is the code for HOI Transformer

HOI Transformer Code for CVPR 2021 accepted paper End-to-End Human Object Interaction Detection with HOI Transformer. Reproduction We recomend you to

BigBangEpoch 124 Dec 29, 2022
Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning

Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning Yansong Tang *, Zhenyu Jiang *, Zhenda Xie *, Yue

Zhenyu Jiang 12 Nov 16, 2022
A simple software for capturing human body movements using the Kinect camera.

KinectMotionCapture A simple software for capturing human body movements using the Kinect camera. The software can seamlessly save joints and bones po

Aleksander Palkowski 5 Aug 13, 2022
The implementation of ICASSP 2020 paper "Pixel-level self-paced learning for super-resolution"

Pixel-level Self-Paced Learning for Super-Resolution This is an official implementaion of the paper Pixel-level Self-Paced Learning for Super-Resoluti

Elon Lin 41 Dec 15, 2022
Composing methods for ML training efficiency

MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training.

MosaicML 2.8k Jan 08, 2023
an Evolutionary Algorithm assisted GAN

EvoGAN an Evolutionary Algorithm assisted GAN ckpts

3 Oct 09, 2022
DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency

[CVPR19] DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency (Oral paper) Authors: Kuang-Jui Hsu, Yen-Yu Lin, Yung-Yu Chuang PDF:

Kuang-Jui Hsu 139 Dec 22, 2022
Frigate - NVR With Realtime Object Detection for IP Cameras

A complete and local NVR designed for HomeAssistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.

Blake Blackshear 6.4k Dec 31, 2022