Emotional conditioned music generation using transformer-based model.

Related tags

Deep LearningEMOPIA
Overview

This is the official repository of EMOPIA: A Multi-Modal Pop Piano Dataset For Emotion Recognition and Emotion-based Music Generation. The paper has been accepted by International Society for Music Information Retrieval Conference 2021.

  • Note: We release the transcribed MIDI files. As for the audio part, due to the copyright issue, we will only release the YouTube ID of the tracks and the timestamp of them. You might use open source crawler to get the audio file.

Use EMOPIA by MusPy

  1. install muspy
pip install muspy
  1. Use it in your script
import muspy

emopia = muspy.EMOPIADataset("data/emopia/", download_and_extract=True)
emopia.convert()
music = emopia[0]
print(music.annotations[0].annotation)

You can get the label of the piece of music:

{'emo_class': '1', 'YouTube_ID': '0vLPYiPN7qY', 'seg_id': '0'}
  • emo_class: ['1', '2', '3', '4']
  • YouTube_ID: the YouTube ID of this piece of music
  • seg_id: means this piece of music is the ith piece we take from this song. (zero-based).

For more usage please refer to MusPy.

Emotion Classification

For the classification models and codes, please refer to this repo.

Conditional Generation

Environment

  1. Install PyTorch and fast transformer:

    • torch==1.7.0 (Please install it according to your CUDA version.)

    • fast transformer :

      pip install --user pytorch-fast-transformers 
      

      or refer to the original repository

  2. Other requirements:

    pip install -r requirements.txt

Usage

Inference

  1. Download the checkpoints and put them into exp/

    • Manually:

    • By commend: (install gdown: pip install gdown)

      #baseline:
      gdown --id 1Q9vQYnNJ0hXBFwcxdWQgDNmzoW3MLl3h --output exp/baseline.zip
      
      # no-pretrained transformer
      gdown --id 1ZULJgBRu2Wb3jxFmGfAHP1v_tjoryFM7 --output exp/no-pretrained_transformer.zip
      
      # pretrained transformer
      gdown --id 19Seq18b2JNzOamEQMG1uarKjj27HJkHu --output exp/pretrained_transformer.zip
      
  2. Inference options:

  • num_songs: number of midis you want to generate.

  • out_dir: the folder where the generated midi will be saved. If not specified, midi files will be saved to exp/MODEL_YOU_USED/gen_midis/.

  • task_type: the task_type needs to be the same as the task specified during training.

    • '4-cls' for 4 class conditioning
    • 'Arousal' for only conditioning on arousal
    • 'Valence' for only conditioning on Valence
    • 'ignore' for not conditioning
  • emo_tag: the target class of emotion you want to assign.

    • If the task_type is '4-cls', emo_tag can be: 1,2,3,4, which refers to Q1, Q2, Q3, Q4.
    • If the task_type is 'Arousal', emo_tag can be: 1, 2. 1 for High arousal, 2 for Low arousal.
    • If the task_type is 'Valence', emo_tag can be: 1, 2. 1 for High Valence, 2 for Low Valence.
  1. Inference

    python main_cp.py --mode inference --task_type 4-cls --load_ckt CHECKPOINT_FOLDER --load_ckt_loss 25 --num_songs 10 --emo_tag 1 
    

Train the model by yourself

  1. Prepare the data follow the steps.

  2. training options:

  • exp_name: the folder name that the checkpoints will be saved.

  • data_parallel: use data_parallel to let the training process faster. (0: not use, 1: use)

  • task_type: the conditioning task:

    • '4-cls' for 4 class conditioning
    • 'Arousal' for only conditioning on arousal
    • 'Valence' for only conditioning on Valence
    • 'ignore' for not conditioning

    a. Only train on EMOPIA: (no-pretrained transformer in the paper)

      python main_cp.py --path_train_data emopia --exp_name YOUR_EXP_NAME --load_ckt none
    

    b. Pre-train the transformer on AILabs17k:

      python main_cp.py --path_train_data ailabs --exp_name YOUR_EXP_NAME --load_ckt none --task_type ignore
    

    c. fine-tune the transformer on EMOPIA: For example, you want to use the pre-trained model stored in 0309-1857 with loss= 30 to fine-tune:

      python main_cp.py --path_train_data emopia --exp_name YOUR_EXP_NAME --load_ckt 0309-1857 --load_ckt_loss 30
    

Baseline

  1. The baseline code is based on the work of Learning to Generate Music with Sentiment

  2. According to the author, the model works best when it is trained with 4096 neurons of LSTM, but takes 12 days for training. Therefore, due to the limit of computational resource, we used the size of 512 neurons instead of 4096.

  3. In order to use this as evaluation against our model, the target emotion classes is expanded to 4Q instead of just positive/negative.

Authors

The paper is a co-working project with Joann, SeungHeon and Nabin. This repository is mentained by Joann and me.

License

The EMOPIA dataset is released under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). It is provided primarily for research purposes and is prohibited to be used for commercial purposes. When sharing your result based on EMOPIA, any act that defames the original music owner is strictly prohibited.

The hand drawn piano in the logo comes from Adobe stock. The author is Burak. I purchased it under standard license.

Cite the dataset

@inproceedings{{EMOPIA},
         author = {Hung, Hsiao-Tzu and Ching, Joann and Doh, Seungheon and Kim, Nabin and Nam, Juhan and Yang, Yi-Hsuan},
         title = {{MOPIA}: A Multi-Modal Pop Piano Dataset For Emotion Recognition and Emotion-based Music Generation},
         booktitle = {Proc. Int. Society for Music Information Retrieval Conf.},
         year = {2021}
}
Owner
hung anna
hung anna
DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations

DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations This repository contains the data, scripts and baseline co

Alexa 51 Dec 17, 2022
A Novel Plug-in Module for Fine-grained Visual Classification

Pytorch implementation for A Novel Plug-in Module for Fine-Grained Visual Classification. fine-grained visual classification task.

ChouPoYung 109 Dec 20, 2022
Harmonic Memory Networks for Graph Completion

HMemNetworks Code and documentation for Harmonic Memory Networks, a series of models for compositionally assembling representations of graph elements

mlalisse 0 Oct 27, 2021
abess: Fast Best-Subset Selection in Python and R

abess: Fast Best-Subset Selection in Python and R Overview abess (Adaptive BEst Subset Selection) library aims to solve general best subset selection,

297 Dec 21, 2022
Official PyTorch implementation of the paper: Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting.

Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting Official PyTorch implementation of the paper: Improving Graph Neural Net

Giorgos Bouritsas 58 Dec 31, 2022
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Fisher Induced Sparse uncHanging (FISH) Mask This repo contains the code for Fisher Induced Sparse uncHanging (FISH) Mask training, from "Training Neu

Varun Nair 37 Dec 30, 2022
Visualizing lattice vibration information from phonon dispersion to atoms (For GPUMD)

Phonon-Vibration-Viewer (For GPUMD) Visualizing lattice vibration information from phonon dispersion for primitive atoms. In this tutorial, we will in

Liangting 6 Dec 10, 2022
Source code for the paper "Periodic Traveling Waves in an Integro-Difference Equation With Non-Monotonic Growth and Strong Allee Effect"

Source code for the paper "Periodic Traveling Waves in an Integro-Difference Equation With Non-Monotonic Growth and Strong Allee Effect" by Michael Ne

M Nestor 1 Apr 19, 2022
A TensorFlow implementation of DeepMind's WaveNet paper

A TensorFlow implementation of DeepMind's WaveNet paper This is a TensorFlow implementation of the WaveNet generative neural network architecture for

Igor Babuschkin 5.3k Dec 28, 2022
Centroid-UNet is deep neural network model to detect centroids from satellite images.

Centroid UNet - Locating Object Centroids in Aerial/Serial Images Introduction Centroid-UNet is deep neural network model to detect centroids from Aer

GIC-AIT 19 Dec 08, 2022
UIUCTF 2021 Public Challenge Repository

UIUCTF-2021-Public UIUCTF 2021 Public Challenge Repository Notes: every challenge folder contains a challenge.yml file in the format for ctfcli, CTFd'

SIGPwny 15 Nov 03, 2022
Part-Aware Data Augmentation for 3D Object Detection in Point Cloud

Part-Aware Data Augmentation for 3D Object Detection in Point Cloud This repository contains a reference implementation of our Part-Aware Data Augment

Jaeseok Choi 62 Jan 03, 2023
This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transformer"

FlatTN This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transfor

THUHCSI 74 Nov 28, 2022
Machine-in-the-Loop Rewriting for Creative Image Captioning

Machine-in-the-Loop Rewriting for Creative Image Captioning Data Annotated sources of data used in the paper: Data Source URL Mohammed et al. Link Gor

Vishakh P 6 Jul 24, 2022
A PyTorch implementation of unsupervised SimCSE

A PyTorch implementation of unsupervised SimCSE

99 Dec 23, 2022
Pytorch implementation of Decoupled Spatial-Temporal Transformer for Video Inpainting

Decoupled Spatial-Temporal Transformer for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu Sun, Xiaogang Wang, J

51 Dec 13, 2022
Research code for Arxiv paper "Camera Motion Agnostic 3D Human Pose Estimation"

GMR(Camera Motion Agnostic 3D Human Pose Estimation) This repo provides the source code of our arXiv paper: Seong Hyun Kim, Sunwon Jeong, Sungbum Park

Seong Hyun Kim 1 Feb 07, 2022
A PaddlePaddle version image model zoo.

Paddle-Image-Models English | 简体中文 A PaddlePaddle version image model zoo. Install Package Install by pip: $ pip install ppim Install by wheel package

AgentMaker 131 Dec 07, 2022
A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation

##A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation. #USAGE To run the trained classifier on some images: python w

Alex Seewald 13 Nov 17, 2022
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Zhao Jian 3.1k Jan 02, 2023