Emotional conditioned music generation using transformer-based model.

Related tags

Deep LearningEMOPIA
Overview

This is the official repository of EMOPIA: A Multi-Modal Pop Piano Dataset For Emotion Recognition and Emotion-based Music Generation. The paper has been accepted by International Society for Music Information Retrieval Conference 2021.

  • Note: We release the transcribed MIDI files. As for the audio part, due to the copyright issue, we will only release the YouTube ID of the tracks and the timestamp of them. You might use open source crawler to get the audio file.

Use EMOPIA by MusPy

  1. install muspy
pip install muspy
  1. Use it in your script
import muspy

emopia = muspy.EMOPIADataset("data/emopia/", download_and_extract=True)
emopia.convert()
music = emopia[0]
print(music.annotations[0].annotation)

You can get the label of the piece of music:

{'emo_class': '1', 'YouTube_ID': '0vLPYiPN7qY', 'seg_id': '0'}
  • emo_class: ['1', '2', '3', '4']
  • YouTube_ID: the YouTube ID of this piece of music
  • seg_id: means this piece of music is the ith piece we take from this song. (zero-based).

For more usage please refer to MusPy.

Emotion Classification

For the classification models and codes, please refer to this repo.

Conditional Generation

Environment

  1. Install PyTorch and fast transformer:

    • torch==1.7.0 (Please install it according to your CUDA version.)

    • fast transformer :

      pip install --user pytorch-fast-transformers 
      

      or refer to the original repository

  2. Other requirements:

    pip install -r requirements.txt

Usage

Inference

  1. Download the checkpoints and put them into exp/

    • Manually:

    • By commend: (install gdown: pip install gdown)

      #baseline:
      gdown --id 1Q9vQYnNJ0hXBFwcxdWQgDNmzoW3MLl3h --output exp/baseline.zip
      
      # no-pretrained transformer
      gdown --id 1ZULJgBRu2Wb3jxFmGfAHP1v_tjoryFM7 --output exp/no-pretrained_transformer.zip
      
      # pretrained transformer
      gdown --id 19Seq18b2JNzOamEQMG1uarKjj27HJkHu --output exp/pretrained_transformer.zip
      
  2. Inference options:

  • num_songs: number of midis you want to generate.

  • out_dir: the folder where the generated midi will be saved. If not specified, midi files will be saved to exp/MODEL_YOU_USED/gen_midis/.

  • task_type: the task_type needs to be the same as the task specified during training.

    • '4-cls' for 4 class conditioning
    • 'Arousal' for only conditioning on arousal
    • 'Valence' for only conditioning on Valence
    • 'ignore' for not conditioning
  • emo_tag: the target class of emotion you want to assign.

    • If the task_type is '4-cls', emo_tag can be: 1,2,3,4, which refers to Q1, Q2, Q3, Q4.
    • If the task_type is 'Arousal', emo_tag can be: 1, 2. 1 for High arousal, 2 for Low arousal.
    • If the task_type is 'Valence', emo_tag can be: 1, 2. 1 for High Valence, 2 for Low Valence.
  1. Inference

    python main_cp.py --mode inference --task_type 4-cls --load_ckt CHECKPOINT_FOLDER --load_ckt_loss 25 --num_songs 10 --emo_tag 1 
    

Train the model by yourself

  1. Prepare the data follow the steps.

  2. training options:

  • exp_name: the folder name that the checkpoints will be saved.

  • data_parallel: use data_parallel to let the training process faster. (0: not use, 1: use)

  • task_type: the conditioning task:

    • '4-cls' for 4 class conditioning
    • 'Arousal' for only conditioning on arousal
    • 'Valence' for only conditioning on Valence
    • 'ignore' for not conditioning

    a. Only train on EMOPIA: (no-pretrained transformer in the paper)

      python main_cp.py --path_train_data emopia --exp_name YOUR_EXP_NAME --load_ckt none
    

    b. Pre-train the transformer on AILabs17k:

      python main_cp.py --path_train_data ailabs --exp_name YOUR_EXP_NAME --load_ckt none --task_type ignore
    

    c. fine-tune the transformer on EMOPIA: For example, you want to use the pre-trained model stored in 0309-1857 with loss= 30 to fine-tune:

      python main_cp.py --path_train_data emopia --exp_name YOUR_EXP_NAME --load_ckt 0309-1857 --load_ckt_loss 30
    

Baseline

  1. The baseline code is based on the work of Learning to Generate Music with Sentiment

  2. According to the author, the model works best when it is trained with 4096 neurons of LSTM, but takes 12 days for training. Therefore, due to the limit of computational resource, we used the size of 512 neurons instead of 4096.

  3. In order to use this as evaluation against our model, the target emotion classes is expanded to 4Q instead of just positive/negative.

Authors

The paper is a co-working project with Joann, SeungHeon and Nabin. This repository is mentained by Joann and me.

License

The EMOPIA dataset is released under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). It is provided primarily for research purposes and is prohibited to be used for commercial purposes. When sharing your result based on EMOPIA, any act that defames the original music owner is strictly prohibited.

The hand drawn piano in the logo comes from Adobe stock. The author is Burak. I purchased it under standard license.

Cite the dataset

@inproceedings{{EMOPIA},
         author = {Hung, Hsiao-Tzu and Ching, Joann and Doh, Seungheon and Kim, Nabin and Nam, Juhan and Yang, Yi-Hsuan},
         title = {{MOPIA}: A Multi-Modal Pop Piano Dataset For Emotion Recognition and Emotion-based Music Generation},
         booktitle = {Proc. Int. Society for Music Information Retrieval Conf.},
         year = {2021}
}
Owner
hung anna
hung anna
Implementation of Convolutional LSTM in PyTorch.

ConvLSTM_pytorch This file contains the implementation of Convolutional LSTM in PyTorch made by me and DavideA. We started from this implementation an

Andrea Palazzi 1.3k Dec 29, 2022
Implementation of "Large Steps in Inverse Rendering of Geometry"

Large Steps in Inverse Rendering of Geometry ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia), December 2021. Baptiste Nicolet · Alec Jacob

RGL: Realistic Graphics Lab 274 Jan 06, 2023
Neural Point-Based Graphics

Neural Point-Based Graphics Project   Video   Paper Neural Point-Based Graphics Kara-Ali Aliev1 Artem Sevastopolsky1,2 Maria Kolos1,2 Dmitry Ulyanov3

Ali Aliev 252 Dec 13, 2022
BridgeGAN - Tensorflow implementation of Bridging the Gap between Label- and Reference-based Synthesis in Multi-attribute Image-to-Image Translation.

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
Implementation of Perceiver, General Perception with Iterative Attention in TensorFlow

Perceiver This Python package implements Perceiver: General Perception with Iterative Attention by Andrew Jaegle in TensorFlow. This model builds on t

Rishit Dagli 84 Oct 15, 2022
No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency

This repository contains the implementation for the paper: No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consiste

Alireza Golestaneh 75 Dec 30, 2022
A PyTorch implementation of unsupervised SimCSE

A PyTorch implementation of unsupervised SimCSE

99 Dec 23, 2022
Alphabetical Letter Recognition

DecisionTrees-Image-Classification Alphabetical Letter Recognition In these demo we are using "Decision Trees" Our database is composed by Learning Im

Mohammed Firass 4 Nov 30, 2021
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

tricktreat 87 Dec 16, 2022
Official implementation of the method ContIG, for self-supervised learning from medical imaging with genomics

ContIG: Self-supervised Multimodal Contrastive Learning for Medical Imaging with Genetics This is the code implementation of the paper "ContIG: Self-s

Digital Health & Machine Learning 22 Dec 13, 2022
Deep Multi-Magnification Network for multi-class tissue segmentation of whole slide images

Deep Multi-Magnification Network This repository provides training and inference codes for Deep Multi-Magnification Network published here. Deep Multi

Computational Pathology 12 Aug 06, 2022
Tilted Empirical Risk Minimization (ICLR '21)

Tilted Empirical Risk Minimization This repository contains the implementation for the paper Tilted Empirical Risk Minimization ICLR 2021 Empirical ri

Tian Li 40 Nov 28, 2022
An example to implement a new backbone with OpenMMLab framework.

Backbone example on OpenMMLab framework English | 简体中文 Introduction This is an template repo about how to use OpenMMLab framework to develop a new bac

Ma Zerun 22 Dec 29, 2022
Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your personal computer!

Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your machine! Motivation Would

Joeri Hermans 15 Sep 11, 2022
Neural Scene Flow Prior (NeurIPS 2021 spotlight)

Neural Scene Flow Prior Xueqian Li, Jhony Kaesemodel Pontes, Simon Lucey Will appear on Thirty-fifth Conference on Neural Information Processing Syste

Lilac Lee 85 Jan 03, 2023
LineBoard - Python+React+MySQL-白板即時系統改善人群行為

LineBoard-白板即時系統改善人群行為 即時顯示實驗室的使用狀況,並遠端預約排隊,以此來改善人們的工作效率 程式架構 運作流程 使用者先至該實驗室網站預約

Bo-Jyun Huang 1 Feb 22, 2022
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

912 Jan 08, 2023
Pytorch implementation for M^3L

Learning to Generalize Unseen Domains via Memory-based Multi-Source Meta-Learning for Person Re-Identification (CVPR 2021) Introduction This is the Py

Yuyang Zhao 45 Dec 26, 2022
Learning Chinese Character style with conditional GAN

zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks Introduction Learning eastern asian language typefaces with GAN. zi2zi(字到字, me

Yuchen Tian 2.2k Jan 02, 2023