Source code for From Stars to Subgraphs

Overview

GNNAsKernel

Official code for From Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness

Visualizations

GNN-AK(+)

GNN-AK

GNN-AK(+) with SubgraphDrop

GNN-AK-S: GNN-AK with SubgraphDrop

Setup

# params
# 10/6/2021, newest packages. 
ENV=gnn_ak
CUDA=11.1
TORCH=1.9.1
PYG=2.0.1

# create env 
conda create --name $ENV python=3.9 -y
conda activate $ENV

# install pytorch 
conda install pytorch=$TORCH torchvision torchaudio cudatoolkit=$cuda -c pytorch -c nvidia -y

# install pyg2.0
conda install pyg=$PYG -c pyg -c conda-forge -y

# install ogb 
pip install ogb

# install rdkit
conda install -c conda-forge rdkit -y

# update yacs and tensorboard
pip install yacs==0.1.8 --force  # PyG currently use 0.1.6 which doesn't support None argument. 
pip install tensorboard
pip install matplotlib

Code structure

core/ contains all source code.
train/ contains all scripts for available datasets.

  • Subgraph extraction is implemented as data transform operator in PyG. See core/transform.py. The transform layer will built the mapping from original nodes and edges to all subgraphs.
  • The mappings are used directly in GNN-AK(+) to online build the combined subgraphs for each graph, see core/model.py. (For each graph with N node, N subgraphs are combined to a gaint subgraph first. Then for batch, all combined gaint subgraphs are combined again.)
  • SubgraphDrop is implemented inside core/transform.py, see here. And the usage in core/model.py.
  • core/model_utils/pyg_gnn_wrapper.py is the place to add your self-designed GNN layer X and then use X-AK(+) on fly~

Hyperparameters

See core/config.py for all options.

Run normal GNNs

See core/model_utls/pyg_gnn_wrapper.py for more options.

Custom new GNN convolutional layer 'X' can be plugged in core/model_utls/pyg_gnn_wrapper.py, and use 'X' as model.gnn_type option.

# Run different normal GNNs 
python -m train.zinc model.mini_layers 0 model.gnn_type GINEConv
python -m train.zinc model.mini_layers 0 model.gnn_type SimplifiedPNAConv
python -m train.zinc model.mini_layers 0 model.gnn_type GCNConv
python -m train.zinc model.mini_layers 0 model.gnn_type GATConv
python -m train.zinc model.mini_layers 0 model.gnn_type ...

python -m train.zinc model.num_layers 6 model.mini_layers 0 model.gnn_type GCNConv # 6-layer GCN

Run different datasets

See all available datasets under train folder.

# Run different datasets
python -m train.zinc 
python -m train.cifar10 
python -m train.counting 
python -m train.graph_property 
python -m ...

Run GNN-AK

Fully theoretically explained by Subgraph-1-WL*.

Use: model.mini_layers 1 (or >1) model.embs "(0,1)" model.hops_dim 0

python -m train.zinc model.mini_layers 1 model.gnn_type GINEConv model.embs "(0,1)" model.hops_dim 0  

Run GNN-AK+

At least as powerful as GNN-AK (or more powerful).

Use: model.mini_layers 1 (or >1) model.embs "(0,1,2)" model.hops_dim 16
These are set as default. See core/config.py.

# Run GNN-AK+ with different normal GNNs
python -m train.zinc model.mini_layers 1 model.gnn_type GINEConv            # 1-layer base model
python -m train.zinc model.mini_layers 1 model.gnn_type SimplifiedPNAConv   # 1-layer base model
python -m train.zinc model.mini_layers 2 model.gnn_type GINEConv            # 2-layer base model
python -m train.zinc model.mini_layers 2 model.gnn_type SimplifiedPNAConv   # 2-layer base model

Run with different number of GNN-AK(+) iterations

Changing number of outer layers.

python -m train.zinc model.num_layers 4 
python -m train.zinc model.num_layers 6 
python -m train.zinc model.num_layers 8 

Run with different subgraph patterns

See core/transform.py for detailed implementation.

python -m train.zinc subgraph.hops 2      # 2-hop egonet
python -m train.zinc subgraph.hops 3      # 3-hop egonet

# Run with random-walk subgraphs based on node2vec 
python -m train.zinc subgraph.hops 0 subgraph.walk_length 10 subgraph.walk_p 1.0 subgraph.walk_q 1.0  

Run GNN-AK(+) with SubgraphDrop

See option sampling section under core/config.py.

Change sampling.redundancy(R in the paper) to change the resource usage.

python -m train.zinc sampling.mode shortest_path sampling.redundancy 1 sampling.stride 5 sampling.batch_factor 4
python -m train.zinc sampling.mode shortest_path sampling.redundancy 3 sampling.stride 5 sampling.batch_factor 4
python -m train.zinc sampling.mode shortest_path sampling.redundancy 5 sampling.stride 5 sampling.batch_factor 4


python -m train.cifar10 sampling.mode random sampling.redundancy 1 sampling.random_rate 0.07 sampling.batch_factor 8 
python -m train.cifar10 sampling.mode random sampling.redundancy 3 sampling.random_rate 0.21 sampling.batch_factor 8 
python -m train.cifar10 sampling.mode random sampling.redundancy 5 sampling.random_rate 0.35 sampling.batch_factor 8 
## Note: sampling.random_rate = 0.07*sampling.redundancy. 0.07 is set based on dataset. 

Results

GNN-AK boosts expressiveness

GNN-AK boosts expressiveness

GNN-AK boosts practical performance

GNN-AK boosts practical performance

Cite

Please cite our work if you use our code!

@inproceedings{
anonymous2022from,
title={From Stars to Subgraphs: Uplifting Any {GNN} with Local Structure Awareness},
author={Anonymous},
booktitle={Submitted to The Tenth International Conference on Learning Representations },
year={2022},
url={https://openreview.net/forum?id=Mspk_WYKoEH},
note={under review}
}
HNECV: Heterogeneous Network Embedding via Cloud model and Variational inference

HNECV This repository provides a reference implementation of HNECV as described in the paper: HNECV: Heterogeneous Network Embedding via Cloud model a

4 Jun 28, 2022
OpenDelta - An Open-Source Framework for Paramter Efficient Tuning.

OpenDelta is a toolkit for parameter efficient methods (we dub it as delta tuning), by which users could flexibly assign (or add) a small amount parameters to update while keeping the most paramters

THUNLP 386 Dec 26, 2022
ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation

ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation This repository provides a PyTorch implementation of ADSPM. Requirements Pyth

24 Jul 24, 2022
This is the official pytorch implementation of the BoxEL for the description logic EL++

BoxEL: Box EL++ Embedding This is the official pytorch implementation of the BoxEL for the description logic EL++. BoxEL++ is a geometric approach bas

1 Nov 03, 2022
Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data

Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data This is the official PyTorch implementation of the SeCo paper: @articl

ElementAI 101 Dec 12, 2022
Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes

Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes This repository is the official implementation of Us

Damien Bouchabou 0 Oct 18, 2021
Training Structured Neural Networks Through Manifold Identification and Variance Reduction

Training Structured Neural Networks Through Manifold Identification and Variance Reduction This repository is a pytorch implementation of the Regulari

0 Dec 23, 2021
Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.

GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021

Michael Schlichtkrull 29 Sep 02, 2022
Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation.

Pretrain-Recsys This is our Tensorflow implementation for our WSDM 2021 paper: Bowen Hao, Jing Zhang, Hongzhi Yin, Cuiping Li, Hong Chen. Pre-Training

30 Nov 14, 2022
Near-Duplicate Video Retrieval with Deep Metric Learning

Near-Duplicate Video Retrieval with Deep Metric Learning This repository contains the Tensorflow implementation of the paper Near-Duplicate Video Retr

2 Jan 24, 2022
Code repo for EMNLP21 paper "Zero-Shot Information Extraction as a Unified Text-to-Triple Translation"

Zero-Shot Information Extraction as a Unified Text-to-Triple Translation Source code repo for paper Zero-Shot Information Extraction as a Unified Text

cgraywang 88 Dec 31, 2022
Watch faces morph into each other with StyleGAN 2, StyleGAN, and DCGAN!

FaceMorpher FaceMorpher is an innovative project to get a unique face morph (or interpolation for geeks) on a website. Yes, this means you can see fac

Anish 9 Jun 24, 2022
Generate pixel-style avatars with python.

face2pixel Generate pixel-style avatars with python. Run: Clone the project: git clone https://github.com/theodorecooper/face2pixel install requiremen

Theodore Cooper 2 May 11, 2022
KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

86 Dec 12, 2022
ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021)

ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021) Project Page | Video | Paper | Data We present a novel metho

65 Nov 28, 2022
Code for KHGT model, AAAI2021

KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi

32 Nov 29, 2022
Official Code Release for Container : Context Aggregation Network

Container: Context Aggregation Network Official Code Release for Container : Context Aggregation Network Comparion between CNN, MLP-Mixer and Transfor

peng gao 42 Nov 17, 2021
Accuracy Aligned. Concise Implementation of Swin Transformer

Accuracy Aligned. Concise Implementation of Swin Transformer This repository contains the implementation of Swin Transformer, and the training codes o

FengWang 77 Dec 16, 2022
Deploy a ML inference service on a budget in less than 10 lines of code.

BudgetML is perfect for practitioners who would like to quickly deploy their models to an endpoint, but not waste a lot of time, money, and effort trying to figure out how to do this end-to-end.

1.3k Dec 25, 2022
Official Implementation of VAT

Semantic correspondence Few-shot segmentation Cost Aggregation Is All You Need for Few-Shot Segmentation For more information, check out project [Proj

Hamacojr 114 Dec 27, 2022