Source code for From Stars to Subgraphs

Overview

GNNAsKernel

Official code for From Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness

Visualizations

GNN-AK(+)

GNN-AK

GNN-AK(+) with SubgraphDrop

GNN-AK-S: GNN-AK with SubgraphDrop

Setup

# params
# 10/6/2021, newest packages. 
ENV=gnn_ak
CUDA=11.1
TORCH=1.9.1
PYG=2.0.1

# create env 
conda create --name $ENV python=3.9 -y
conda activate $ENV

# install pytorch 
conda install pytorch=$TORCH torchvision torchaudio cudatoolkit=$cuda -c pytorch -c nvidia -y

# install pyg2.0
conda install pyg=$PYG -c pyg -c conda-forge -y

# install ogb 
pip install ogb

# install rdkit
conda install -c conda-forge rdkit -y

# update yacs and tensorboard
pip install yacs==0.1.8 --force  # PyG currently use 0.1.6 which doesn't support None argument. 
pip install tensorboard
pip install matplotlib

Code structure

core/ contains all source code.
train/ contains all scripts for available datasets.

  • Subgraph extraction is implemented as data transform operator in PyG. See core/transform.py. The transform layer will built the mapping from original nodes and edges to all subgraphs.
  • The mappings are used directly in GNN-AK(+) to online build the combined subgraphs for each graph, see core/model.py. (For each graph with N node, N subgraphs are combined to a gaint subgraph first. Then for batch, all combined gaint subgraphs are combined again.)
  • SubgraphDrop is implemented inside core/transform.py, see here. And the usage in core/model.py.
  • core/model_utils/pyg_gnn_wrapper.py is the place to add your self-designed GNN layer X and then use X-AK(+) on fly~

Hyperparameters

See core/config.py for all options.

Run normal GNNs

See core/model_utls/pyg_gnn_wrapper.py for more options.

Custom new GNN convolutional layer 'X' can be plugged in core/model_utls/pyg_gnn_wrapper.py, and use 'X' as model.gnn_type option.

# Run different normal GNNs 
python -m train.zinc model.mini_layers 0 model.gnn_type GINEConv
python -m train.zinc model.mini_layers 0 model.gnn_type SimplifiedPNAConv
python -m train.zinc model.mini_layers 0 model.gnn_type GCNConv
python -m train.zinc model.mini_layers 0 model.gnn_type GATConv
python -m train.zinc model.mini_layers 0 model.gnn_type ...

python -m train.zinc model.num_layers 6 model.mini_layers 0 model.gnn_type GCNConv # 6-layer GCN

Run different datasets

See all available datasets under train folder.

# Run different datasets
python -m train.zinc 
python -m train.cifar10 
python -m train.counting 
python -m train.graph_property 
python -m ...

Run GNN-AK

Fully theoretically explained by Subgraph-1-WL*.

Use: model.mini_layers 1 (or >1) model.embs "(0,1)" model.hops_dim 0

python -m train.zinc model.mini_layers 1 model.gnn_type GINEConv model.embs "(0,1)" model.hops_dim 0  

Run GNN-AK+

At least as powerful as GNN-AK (or more powerful).

Use: model.mini_layers 1 (or >1) model.embs "(0,1,2)" model.hops_dim 16
These are set as default. See core/config.py.

# Run GNN-AK+ with different normal GNNs
python -m train.zinc model.mini_layers 1 model.gnn_type GINEConv            # 1-layer base model
python -m train.zinc model.mini_layers 1 model.gnn_type SimplifiedPNAConv   # 1-layer base model
python -m train.zinc model.mini_layers 2 model.gnn_type GINEConv            # 2-layer base model
python -m train.zinc model.mini_layers 2 model.gnn_type SimplifiedPNAConv   # 2-layer base model

Run with different number of GNN-AK(+) iterations

Changing number of outer layers.

python -m train.zinc model.num_layers 4 
python -m train.zinc model.num_layers 6 
python -m train.zinc model.num_layers 8 

Run with different subgraph patterns

See core/transform.py for detailed implementation.

python -m train.zinc subgraph.hops 2      # 2-hop egonet
python -m train.zinc subgraph.hops 3      # 3-hop egonet

# Run with random-walk subgraphs based on node2vec 
python -m train.zinc subgraph.hops 0 subgraph.walk_length 10 subgraph.walk_p 1.0 subgraph.walk_q 1.0  

Run GNN-AK(+) with SubgraphDrop

See option sampling section under core/config.py.

Change sampling.redundancy(R in the paper) to change the resource usage.

python -m train.zinc sampling.mode shortest_path sampling.redundancy 1 sampling.stride 5 sampling.batch_factor 4
python -m train.zinc sampling.mode shortest_path sampling.redundancy 3 sampling.stride 5 sampling.batch_factor 4
python -m train.zinc sampling.mode shortest_path sampling.redundancy 5 sampling.stride 5 sampling.batch_factor 4


python -m train.cifar10 sampling.mode random sampling.redundancy 1 sampling.random_rate 0.07 sampling.batch_factor 8 
python -m train.cifar10 sampling.mode random sampling.redundancy 3 sampling.random_rate 0.21 sampling.batch_factor 8 
python -m train.cifar10 sampling.mode random sampling.redundancy 5 sampling.random_rate 0.35 sampling.batch_factor 8 
## Note: sampling.random_rate = 0.07*sampling.redundancy. 0.07 is set based on dataset. 

Results

GNN-AK boosts expressiveness

GNN-AK boosts expressiveness

GNN-AK boosts practical performance

GNN-AK boosts practical performance

Cite

Please cite our work if you use our code!

@inproceedings{
anonymous2022from,
title={From Stars to Subgraphs: Uplifting Any {GNN} with Local Structure Awareness},
author={Anonymous},
booktitle={Submitted to The Tenth International Conference on Learning Representations },
year={2022},
url={https://openreview.net/forum?id=Mspk_WYKoEH},
note={under review}
}
Learning Logic Rules for Document-Level Relation Extraction

LogiRE Learning Logic Rules for Document-Level Relation Extraction We propose to introduce logic rules to tackle the challenges of doc-level RE. Equip

41 Dec 26, 2022
Expand human face editing via Global Direction of StyleCLIP, especially to maintain similarity during editing.

Oh-My-Face This project is based on StyleCLIP, RIFE, and encoder4editing, which aims to expand human face editing via Global Direction of StyleCLIP, e

AiLin Huang 51 Nov 17, 2022
Explore extreme compression for pre-trained language models

Code for paper "Exploring extreme parameter compression for pre-trained language models ICLR2022"

twinkle 16 Nov 14, 2022
CVPR2022 paper "Dense Learning based Semi-Supervised Object Detection"

[CVPR2022] DSL: Dense Learning based Semi-Supervised Object Detection DSL is the first work on Anchor-Free detector for Semi-Supervised Object Detecti

Bhchen 69 Dec 08, 2022
Efficient face emotion recognition in photos and videos

This repository contains code of face emotion recognition that was developed in the RSF (Russian Science Foundation) project no. 20-71-10010 (Efficien

Andrey Savchenko 239 Jan 04, 2023
A Japanese Medical Information Extraction Toolkit

JaMIE: a Japanese Medical Information Extraction toolkit Joint Japanese Medical Problem, Modality and Relation Recognition The Train/Test phrases requ

7 Dec 12, 2022
Unicorn can be used for performance analyses of highly configurable systems with causal reasoning

Unicorn can be used for performance analyses of highly configurable systems with causal reasoning. Users or developers can query Unicorn for a performance task.

AISys Lab 27 Jan 05, 2023
Paper list of log-based anomaly detection

Paper list of log-based anomaly detection

Weibin Meng 411 Dec 05, 2022
This was initially the repo for the project of [email protected] of Asaf Mazar, Millad Kassaie and Georgios Chochlakis named "Powered by the Will? Exploring Lay Theories of Behavior Change through Social Media"

Subreddit Analysis This repo includes tools for Subreddit analysis, originally developed for our class project of PSYC 626 in USC, titled "Powered by

Georgios Chochlakis 1 Dec 17, 2021
A module that used for encrypt code which includes RSA and AES

软件加密模块 requirement: Crypto,pycryptodome,pyqt5 本地加密信息为随机字符串 使用说明 命令行参数 -h 帮助 -checkWorking 检查是否能正常工作,后接1确认指令 -checkEndDate 检查截至日期,后接1确认指令 -activateCode

2 Sep 27, 2022
Official code base for the poster "On the use of Cortical Magnification and Saccades as Biological Proxies for Data Augmentation" published in NeurIPS 2021 Workshop (SVRHM)

Self-Supervised Learning (SimCLR) with Biological Plausible Image Augmentations Official code base for the poster "On the use of Cortical Magnificatio

Binxu 8 Aug 17, 2022
Official Repository for the ICCV 2021 paper "PixelSynth: Generating a 3D-Consistent Experience from a Single Image"

PixelSynth: Generating a 3D-Consistent Experience from a Single Image (ICCV 2021) Chris Rockwell, David F. Fouhey, and Justin Johnson [Project Website

Chris Rockwell 95 Nov 22, 2022
Official implementation of Sparse Transformer-based Action Recognition

STAR Official implementation of S parse T ransformer-based A ction R ecognition Dataset download NTU RGB+D 60 action recognition of 2D/3D skeleton fro

Chonghan_Lee 15 Nov 02, 2022
The official project of SimSwap (ACM MM 2020)

SimSwap: An Efficient Framework For High Fidelity Face Swapping Proceedings of the 28th ACM International Conference on Multimedia The official reposi

Six_God 2.6k Jan 08, 2023
Ganilla - Official Pytorch implementation of GANILLA

GANILLA We provide PyTorch implementation for: GANILLA: Generative Adversarial Networks for Image to Illustration Translation. Paper Arxiv Updates (Fe

Samet Hi 462 Dec 05, 2022
Learning Dense Representations of Phrases at Scale (Lee et al., 2020)

DensePhrases DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time. While it efficiently searches th

Princeton Natural Language Processing 540 Dec 30, 2022
This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?".

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?". Code ov

ICLR 2022 Author 934 Dec 30, 2022
LSTM and QRNN Language Model Toolkit for PyTorch

LSTM and QRNN Language Model Toolkit This repository contains the code used for two Salesforce Research papers: Regularizing and Optimizing LSTM Langu

Salesforce 1.9k Jan 08, 2023
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Jia Research Lab 115 Dec 23, 2022
[NeurIPS 2021] Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training

Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training Code for NeurIPS 2021 paper "Better Safe Than Sorry: Preventing Delu

Lue Tao 29 Sep 20, 2022