Source code for From Stars to Subgraphs

Overview

GNNAsKernel

Official code for From Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness

Visualizations

GNN-AK(+)

GNN-AK

GNN-AK(+) with SubgraphDrop

GNN-AK-S: GNN-AK with SubgraphDrop

Setup

# params
# 10/6/2021, newest packages. 
ENV=gnn_ak
CUDA=11.1
TORCH=1.9.1
PYG=2.0.1

# create env 
conda create --name $ENV python=3.9 -y
conda activate $ENV

# install pytorch 
conda install pytorch=$TORCH torchvision torchaudio cudatoolkit=$cuda -c pytorch -c nvidia -y

# install pyg2.0
conda install pyg=$PYG -c pyg -c conda-forge -y

# install ogb 
pip install ogb

# install rdkit
conda install -c conda-forge rdkit -y

# update yacs and tensorboard
pip install yacs==0.1.8 --force  # PyG currently use 0.1.6 which doesn't support None argument. 
pip install tensorboard
pip install matplotlib

Code structure

core/ contains all source code.
train/ contains all scripts for available datasets.

  • Subgraph extraction is implemented as data transform operator in PyG. See core/transform.py. The transform layer will built the mapping from original nodes and edges to all subgraphs.
  • The mappings are used directly in GNN-AK(+) to online build the combined subgraphs for each graph, see core/model.py. (For each graph with N node, N subgraphs are combined to a gaint subgraph first. Then for batch, all combined gaint subgraphs are combined again.)
  • SubgraphDrop is implemented inside core/transform.py, see here. And the usage in core/model.py.
  • core/model_utils/pyg_gnn_wrapper.py is the place to add your self-designed GNN layer X and then use X-AK(+) on fly~

Hyperparameters

See core/config.py for all options.

Run normal GNNs

See core/model_utls/pyg_gnn_wrapper.py for more options.

Custom new GNN convolutional layer 'X' can be plugged in core/model_utls/pyg_gnn_wrapper.py, and use 'X' as model.gnn_type option.

# Run different normal GNNs 
python -m train.zinc model.mini_layers 0 model.gnn_type GINEConv
python -m train.zinc model.mini_layers 0 model.gnn_type SimplifiedPNAConv
python -m train.zinc model.mini_layers 0 model.gnn_type GCNConv
python -m train.zinc model.mini_layers 0 model.gnn_type GATConv
python -m train.zinc model.mini_layers 0 model.gnn_type ...

python -m train.zinc model.num_layers 6 model.mini_layers 0 model.gnn_type GCNConv # 6-layer GCN

Run different datasets

See all available datasets under train folder.

# Run different datasets
python -m train.zinc 
python -m train.cifar10 
python -m train.counting 
python -m train.graph_property 
python -m ...

Run GNN-AK

Fully theoretically explained by Subgraph-1-WL*.

Use: model.mini_layers 1 (or >1) model.embs "(0,1)" model.hops_dim 0

python -m train.zinc model.mini_layers 1 model.gnn_type GINEConv model.embs "(0,1)" model.hops_dim 0  

Run GNN-AK+

At least as powerful as GNN-AK (or more powerful).

Use: model.mini_layers 1 (or >1) model.embs "(0,1,2)" model.hops_dim 16
These are set as default. See core/config.py.

# Run GNN-AK+ with different normal GNNs
python -m train.zinc model.mini_layers 1 model.gnn_type GINEConv            # 1-layer base model
python -m train.zinc model.mini_layers 1 model.gnn_type SimplifiedPNAConv   # 1-layer base model
python -m train.zinc model.mini_layers 2 model.gnn_type GINEConv            # 2-layer base model
python -m train.zinc model.mini_layers 2 model.gnn_type SimplifiedPNAConv   # 2-layer base model

Run with different number of GNN-AK(+) iterations

Changing number of outer layers.

python -m train.zinc model.num_layers 4 
python -m train.zinc model.num_layers 6 
python -m train.zinc model.num_layers 8 

Run with different subgraph patterns

See core/transform.py for detailed implementation.

python -m train.zinc subgraph.hops 2      # 2-hop egonet
python -m train.zinc subgraph.hops 3      # 3-hop egonet

# Run with random-walk subgraphs based on node2vec 
python -m train.zinc subgraph.hops 0 subgraph.walk_length 10 subgraph.walk_p 1.0 subgraph.walk_q 1.0  

Run GNN-AK(+) with SubgraphDrop

See option sampling section under core/config.py.

Change sampling.redundancy(R in the paper) to change the resource usage.

python -m train.zinc sampling.mode shortest_path sampling.redundancy 1 sampling.stride 5 sampling.batch_factor 4
python -m train.zinc sampling.mode shortest_path sampling.redundancy 3 sampling.stride 5 sampling.batch_factor 4
python -m train.zinc sampling.mode shortest_path sampling.redundancy 5 sampling.stride 5 sampling.batch_factor 4


python -m train.cifar10 sampling.mode random sampling.redundancy 1 sampling.random_rate 0.07 sampling.batch_factor 8 
python -m train.cifar10 sampling.mode random sampling.redundancy 3 sampling.random_rate 0.21 sampling.batch_factor 8 
python -m train.cifar10 sampling.mode random sampling.redundancy 5 sampling.random_rate 0.35 sampling.batch_factor 8 
## Note: sampling.random_rate = 0.07*sampling.redundancy. 0.07 is set based on dataset. 

Results

GNN-AK boosts expressiveness

GNN-AK boosts expressiveness

GNN-AK boosts practical performance

GNN-AK boosts practical performance

Cite

Please cite our work if you use our code!

@inproceedings{
anonymous2022from,
title={From Stars to Subgraphs: Uplifting Any {GNN} with Local Structure Awareness},
author={Anonymous},
booktitle={Submitted to The Tenth International Conference on Learning Representations },
year={2022},
url={https://openreview.net/forum?id=Mspk_WYKoEH},
note={under review}
}
Python package for Bayesian Machine Learning with scikit-learn API

Python package for Bayesian Machine Learning with scikit-learn API Installing & Upgrading package pip install https://github.com/AmazaspShumik/sklearn

Amazasp Shaumyan 482 Jan 04, 2023
implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks

YOLOR implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks To reproduce the results in the paper, please us

Kin-Yiu, Wong 1.8k Jan 04, 2023
Neural style transfer in PyTorch.

style-transfer-pytorch An implementation of neural style transfer (A Neural Algorithm of Artistic Style) in PyTorch, supporting CPUs and Nvidia GPUs.

Katherine Crowson 395 Jan 06, 2023
RuleBERT: Teaching Soft Rules to Pre-Trained Language Models

RuleBERT: Teaching Soft Rules to Pre-Trained Language Models (Paper) (Slides) (Video) RuleBERT is a pre-trained language model that has been fine-tune

16 Aug 24, 2022
N-gram models- Unsmoothed, Laplace, Deleted Interpolation

N-gram models- Unsmoothed, Laplace, Deleted Interpolation

Ravika Nagpal 1 Jan 04, 2022
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
Official Pytorch Implementation of: "ImageNet-21K Pretraining for the Masses"(2021) paper

ImageNet-21K Pretraining for the Masses Paper | Pretrained models Official PyTorch Implementation Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, Lihi Zelni

574 Jan 02, 2023
Code for all the Advent of Code'21 challenges mostly written in python

Advent of Code 21 Code for all the Advent of Code'21 challenges mostly written in python. They are not necessarily the best or fastest solutions but j

4 May 26, 2022
Neural Contours: Learning to Draw Lines from 3D Shapes (CVPR2020)

Neural Contours: Learning to Draw Lines from 3D Shapes This repository contains the PyTorch implementation for CVPR 2020 Paper "Neural Contours: Learn

93 Dec 16, 2022
Code for T-Few from "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning"

T-Few This repository contains the official code for the paper: "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learni

220 Dec 31, 2022
Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021]

Neural Material Official code repository for the paper: Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021] Henzler, Deschai

Philipp Henzler 80 Dec 20, 2022
DCA - Official Python implementation of Delaunay Component Analysis algorithm

Delaunay Component Analysis (DCA) Official Python implementation of the Delaunay

Petra Poklukar 9 Sep 06, 2022
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

Jia Research Lab 137 Dec 14, 2022
An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners

An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners This is a coarse version for MAE, only make the pretrain model, the fine

FlyEgle 214 Dec 29, 2022
The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.

News December 27: v1.1.0 New loss functions: CentroidTripletLoss and VICRegLoss Mean reciprocal rank + per-class accuracies See the release notes Than

Kevin Musgrave 5k Jan 05, 2023
This is an example of object detection on Micro bacterium tuberculosis using Mask-RCNN

Mask-RCNN on Mycobacterium tuberculosis This is an example of object detection on Mycobacterium Tuberculosis using Mask RCNN. Implement of Mask R-CNN

Jun-En Ding 1 Sep 16, 2021
Optimizers-visualized - Visualization of different optimizers on local minimas and saddle points.

Optimizers Visualized Visualization of how different optimizers handle mathematical functions for optimization. Contents Installation Usage Functions

Gautam J 1 Jan 01, 2022
Compositional and Parameter-Efficient Representations for Large Knowledge Graphs

NodePiece - Compositional and Parameter-Efficient Representations for Large Knowledge Graphs NodePiece is a "tokenizer" for reducing entity vocabulary

Michael Galkin 107 Jan 04, 2023
You Only 👀 One Sequence

You Only 👀 One Sequence TL;DR: We study the transferability of the vanilla ViT pre-trained on mid-sized ImageNet-1k to the more challenging COCO obje

Hust Visual Learning Team 666 Jan 03, 2023
Neural Magic Eye: Learning to See and Understand the Scene Behind an Autostereogram, arXiv:2012.15692.

Neural Magic Eye Preprint | Project Page | Colab Runtime Official PyTorch implementation of the preprint paper "NeuralMagicEye: Learning to See and Un

Zhengxia Zou 56 Jul 15, 2022