FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX.

Overview

FedJAX: Federated learning with JAX

What is FedJAX?

FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX. FedJAX prioritizes ease-of-use and is intended to be useful for anyone with knowledge of NumPy.

FedJAX is built around the common core components needed in the FL setting:

  • Federated datasets: Clients and a dataset for each client
  • Models: CNN, ResNet, etc.
  • Optimizers: SGD, Momentum, etc.
  • Federated algorithms: Client updates and server aggregation

For Models and Optimizers, FedJAX provides lightweight wrappers and containers that can work with a variety of existing implementations (e.g. a model wrapper that can support both Haiku and Stax). Similarly, for Federated datasets, TFF provides a well established API for working with federated datasets, and FedJAX just provides utilties for converting to NumPy input acceptable to JAX.

However, what FL researchers will find most useful is the collection and customizability of Federated algorithms provided out of box by FedJAX.

Quickstart

The FedJAX Intro notebook provides an introduction into running existing FedJAX experiments. For more custom use cases, please refer to the FedJAX Advanced notebook.

You can also take a look at some of our examples:

Installation

You will need Python 3.6 or later and a working JAX installation. For a CPU-only version:

pip install --upgrade pip
pip install --upgrade jax jaxlib  # CPU-only version

For other devices (e.g. GPU), follow these instructions.

Then, install fedjax from PyPi:

pip install fedjax

Or, to upgrade to the latest version of fedjax:

pip install --upgrade git+https://github.com/google/fedjax.git

Useful pointers

NOTE: FedJAX is not an officially supported Google product. FedJAX is still in the early stages and the API will likely continue to change.

Comments
  • FedJax depends on TensorFlow Federated?

    FedJax depends on TensorFlow Federated?

    I am helping users install FedJax for use in their federated learning research projects and I noticed that installing FedJax is pulling in TensorFlow Federated (0.17) and TensorFlow (2.3). I don't see either of these listed as dependencies of FedJax so I am trying to understand why they are being pulled in by pip install fedjax.

    opened by davidrpugh 7
  • CIFAR 100 Questions

    CIFAR 100 Questions

    Hi, thanks for the awesome library! I want to ask a couple of questions related to CIFAR100 datasets.

    1. I noticed that while the dataset is available in the library, the model is not. Curious if a model for CIFAR100 is work-in-progress, or if there is no short-term plan for this?
    2. Looking at the CIFAR100 dataset, this seems to be inconsistent with Google's TFF. Notably, the cropping size and normalizing are done differently from TFF. Is this intentional? Would it be correct to say that we could expect this to mirror TFF's design eventually?

    Thanks in advance for all the help!

    opened by HanGuo97 5
  • unbiased scale for DRIVE

    unbiased scale for DRIVE

    Following a discussion with @stheertha, I suggest using the unbiased scale (section 4.2 in Drive's paper) for cases where there is more than 1 client.

    Thank you for considering.

    opened by amitport 3
  • Problem of Quick Start in Readme.md

    Problem of Quick Start in Readme.md

    I tried to run the code in the QuickStart and I found some problems. federated_data = fedjax.FederatedData() can not be executed because it is an abstract class. So I replaced it as

    client_a_data = {
            'x': np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]),
            'y': np.array([7, 8])
        }
    client_b_data = {'x': np.array([[9.0, 10.0, 11.0]]), 'y': np.array([12])}
    client_to_data_mapping = {'a': client_a_data, 'b': client_b_data}
    federated_data = fedjax.InMemoryFederatedData(client_to_data_mapping)
    

    The other things are same as the QuickStart, but i got an error

    for client_id, client_output, _ in func(shared_input, clients):
    for client_id, client_batches, client_input in clients:
    ValueError: not enough values to unpack (expected 3, got 2)
    

    It seems that client_batches is missing and we need to batch the dataset, but there is no example which fits this situation.

    opened by Ichiruchan 2
  • Full EMNIST example does not exhibit parallelization

    Full EMNIST example does not exhibit parallelization

    Hi! I am facing an issue with parallelizing the base code provided by the developers.

    • My local workstation contains two GPUs.
    • I installed FedJax in a conda environment
    • I downloaded "emnist_fed_avg.py" file from the folder "examples", deleted the "fedjax.training.set_tf_cpu_only()" line and replaced fed_avg.federated_averaging to fedjax.algorithms.fed_avg.federated_averaging on line 61
    • Having activated the conda environment, I ran the file with python emnist_fed_avg.py. The file runs correctly and prints the expected output (round nums and train/test metrics on each 10th round)
    • The nvidia-smi command shows zero percent utilization and almost zero memory usage on one of the GPUs (and ~40% utilization/maximum memory usage on another node)

    Any ideas what I am doing wrong?

    opened by gaseln 2
  • Clarifying the meaning of

    Clarifying the meaning of "weight"

    In the Intro notebook, the backward_pass_output from model.backward has a weight feature. It seems to me that this is used for performing a weighted averaging in FedAvg, but this is not clear to me how. Perhaps this can be renamed to batch_size?

    opened by Saipraneet 1
  • [NumPy] Remove references to deprecated NumPy type aliases.

    [NumPy] Remove references to deprecated NumPy type aliases.

    [NumPy] Remove references to deprecated NumPy type aliases.

    This change replaces references to a number of deprecated NumPy type aliases (np.bool, np.int, np.float, np.complex, np.object, np.str) with their recommended replacement (bool, int, float, complex, object, str).

    NumPy 1.24 drops the deprecated aliases, so we must remove uses before updating NumPy.

    opened by copybara-service[bot] 0
  • Disable pytype import error for old stax import path

    Disable pytype import error for old stax import path

    Disable pytype import error for old stax import path

    Why? The deprecated jax.experimental.stax path will soon be removed (see https://github.com/google/jax/pull/11700), and this causes pytype to fail.

    opened by copybara-service[bot] 0
  • Rename jax.experimental.stax -> jax.example_libraries.stax

    Rename jax.experimental.stax -> jax.example_libraries.stax

    Rename jax.experimental.stax -> jax.example_libraries.stax

    Why? The former name has been deprecated since JAX version 0.2.25, released in November 2021 (see https://github.com/google/jax/blob/main/CHANGELOG.md#jax-0225-nov-10-2021), and will soon be removed.

    opened by copybara-service[bot] 0
  • Implement standard CIFAR-100 model in fedjax.models.cifar100

    Implement standard CIFAR-100 model in fedjax.models.cifar100

    Add a standard implementation of the model for the CIFAR-100 task. The dataset can be found in fedjax.datasets.cifar100.

    For the model architecture, we should follow “Adaptive Federated Optimization”. The model architecture is detailed in section 4 as a ResNet-18 (replacing batch norm with group norm). Code for this paper and a Keras implementation of the model can be found here. We suggest using either haiku or flax to implement the model for use with JAX.

    If you choose to use haiku, you can use fedjax.create_model_from_haiku to create a fedjax compatible model. If you choose to use flax, wrapping it in a fedjax.Model is fairly straightforward and we can provide guidance for this.

    A good example to follow is #265 that checks in a simple linear model for CIFAR-100 and includes the model implementation, tests, and baseline results with FedAvg using this script. Make sure to add a flags file similar to https://github.com/google/fedjax/blob/main/experiments/fed_avg/fed_avg.CIFAR100_LOGISTIC.flags and add the new task to https://github.com/google/fedjax/blob/main/fedjax/training/tasks.py.

    Thanks for your contributions!

    enhancement contributions welcome 
    opened by jaehunro 1
  • Support for manually modifying client/server learning rate

    Support for manually modifying client/server learning rate

    Hi, I'm playing around with clients learning rate but I cannot find a clean way of modifying it.

    Basically, I need to change the LR following a schedule based on the current round. Is that possible?

    Thanks

    opened by marcociccone 1
  • Support for gldv2 and inaturalist datasets

    Support for gldv2 and inaturalist datasets

    I think it would be great to port these datasets from tff to fedjax. I would be happy to make the effort and contribute to the library, but I need a bit of support from the fedjax team 🙂

    By looking at the tff codebase (gldv2, inaturalist) it looks that load_data_from_cache function creates a tfrecords file for each client.

    The only concrete classes that I see are SQLiteFederatedData and InMemoryFederatedData, but I don't think they are meant for this use case. What would be the best way to map the clients into a FederatedDataset? We could replicate something like FilePerUserClientData.

    Thanks!

    opened by marcociccone 7
  • Support for haiku models with non-trainable state

    Support for haiku models with non-trainable state

    Hi! congrats on this great library! I've started using it a few days ago and I love it!

    Is there any way to use a haiku model with a non-trainable state (e.g. to use batch norm)? I didn't find any nontrivial way, but maybe I'm missing something.

    Thanks a lot for your help!

    opened by marcociccone 2
  • How to create a validation dataset?

    How to create a validation dataset?

    Hello!

    I may need to split each client's train dataset into train and validation parts for grid search purposes (for example, tuning the stepsizes in a method). How can this be achieved in the framework?

    opened by gaseln 4
  • Feature request: Convert standard dataset into a federated dataset

    Feature request: Convert standard dataset into a federated dataset

    Synthetic federated datasets can constructed from standard centralized ones by artificially splitting them among clients. This is usually done using a Dirichlet distribution (e.g. Hsu et al. 2019). Such synthetic datasets are very useful since we can explicitly control the total number of users, as well as the heterogeneity.

    It would be great to have primitives which can automatically convert standard numpy dataset into a FedJax datset.

    contributions welcome 
    opened by Saipraneet 5
Releases(v0.0.15)
Owner
Google
Google ❤️ Open Source
Google
Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease

Heart_Disease_Classification Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease Dataset

Ashish 1 Jan 30, 2022
Simple tools for logging and visualizing, loading and training

TNT TNT is a library providing powerful dataloading, logging and visualization utilities for Python. It is closely integrated with PyTorch and is desi

1.5k Jan 02, 2023
COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping

COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping Version 1.0 COVINS is an accurate, scalable, and versatile vis

ETHZ V4RL 183 Dec 27, 2022
Machine Learning Models were applied to predict the mass of the brain based on gender, age ranges, and head size.

Brain Weight in Humans Variations of head sizes and brain weights in humans Kaggle dataset obtained from this link by Anubhab Swain. Image obtained fr

Anne Livia 1 Feb 02, 2022
The project is an official implementation of our CVPR2019 paper "Deep High-Resolution Representation Learning for Human Pose Estimation"

Deep High-Resolution Representation Learning for Human Pose Estimation (CVPR 2019) News [2020/07/05] A very nice blog from Towards Data Science introd

Leo Xiao 3.9k Jan 05, 2023
Dynamic View Synthesis from Dynamic Monocular Video

Dynamic View Synthesis from Dynamic Monocular Video Project Website | Video | Paper Dynamic View Synthesis from Dynamic Monocular Video Chen Gao, Ayus

Chen Gao 139 Dec 28, 2022
A fast and easy to use, moddable, Python based Minecraft server!

PyMine PyMine - The fastest, easiest to use, Python-based Minecraft Server! Features Note: This list is not always up to date, and doesn't contain all

PyMine 144 Dec 30, 2022
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

631 Jan 04, 2023
Code for Robust Contrastive Learning against Noisy Views

Robust Contrastive Learning against Noisy Views This repository provides a PyTorch implementation of the Robust InfoNCE loss proposed in paper Robust

Ching-Yao Chuang 53 Jan 08, 2023
Real-Time SLAM for Monocular, Stereo and RGB-D Cameras, with Loop Detection and Relocalization Capabilities

ORB-SLAM2 Authors: Raul Mur-Artal, Juan D. Tardos, J. M. M. Montiel and Dorian Galvez-Lopez (DBoW2) 13 Jan 2017: OpenCV 3 and Eigen 3.3 are now suppor

Raul Mur-Artal 7.8k Dec 30, 2022
Trading and Backtesting environment for training reinforcement learning agent or simple rule base algo.

TradingGym TradingGym is a toolkit for training and backtesting the reinforcement learning algorithms. This was inspired by OpenAI Gym and imitated th

Yvictor 1.1k Jan 02, 2023
This repository contains the exercises and its solution contained in the book "An Introduction to Statistical Learning" in python.

An-Introduction-to-Statistical-Learning This repository contains the exercises and its solution contained in the book An Introduction to Statistical L

2.1k Jan 02, 2023
Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation (ICCV 2021)

Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation Home | PyTorch BigGAN Discovery | TensorFlow ProGAN Regulariza

Yuxiang Wei 54 Dec 30, 2022
[NeurIPS 2020] Blind Video Temporal Consistency via Deep Video Prior

pytorch-deep-video-prior (DVP) Official PyTorch implementation for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior TensorFlo

Yazhou XING 90 Oct 19, 2022
Official pytorch code for "APP: Anytime Progressive Pruning"

APP: Anytime Progressive Pruning Diganta Misra1,2,3, Bharat Runwal2,4, Tianlong Chen5, Zhangyang Wang5, Irina Rish1,3 1 Mila - Quebec AI Institute,2 L

Landskape AI 12 Nov 22, 2022
Doods2 - API for detecting objects in images and video streams using Tensorflow

DOODS2 - Return of DOODS Dedicated Open Object Detection Service - Yes, it's a b

Zach 101 Jan 04, 2023
Repo for "Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions" https://arxiv.org/abs/2201.12296

Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions This repo contains the dataset and code for the paper Benchmarking Ro

Jiachen Sun 168 Dec 29, 2022
Point Cloud Registration using Representative Overlapping Points.

Point Cloud Registration using Representative Overlapping Points (ROPNet) Abstract 3D point cloud registration is a fundamental task in robotics and c

ZhuLifa 36 Dec 16, 2022
Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization

Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization Official PyTorch implementation for our URST (Ultra-Resolution Sty

czczup 148 Dec 27, 2022
A neuroanatomy-based augmented reality experience powered by computer vision. Features 3D visuals of the Atlas Brain Map slices.

Brain Augmented Reality (AR) A neuroanatomy-based augmented reality experience powered by computer vision that features 3D visuals of the Atlas Brain

Yasmeen Brain 10 Oct 06, 2022