Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Overview

Bayesian-Torch: Bayesian neural network layers for uncertainty estimation

Get started | Example usage | Documentation | License | Citing

Bayesian layers and utilities to perform stochastic variational inference in PyTorch

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayesian-Torch is designed to be flexible and seamless in extending a deterministic deep neural network architecture to corresponding Bayesian form by simply replacing the deterministic layers with Bayesian layers.

The repository has implementations for the following Bayesian layers:

  • Variational layers with Gaussian mixture model (GMM) posteriors using reparameterized Monte Carlo estimators (in pre-alpha)

    LinearMixture
    Conv1dMixture, Conv2dMixture, Conv3dMixture, ConvTranspose1dMixture, ConvTranspose2dMixture, ConvTranspose3dMixture
    LSTMMixture
    

Please refer to documentation of Bayesian layers for details.

Other features include:

Installation

Install from source:

git clone https://github.com/IntelLabs/bayesian-torch
cd bayesian-torch
pip install .

This code has been tested on PyTorch v1.6.0 and torchvision v0.7.0 with python 3.7.7.

Dependencies:

  • Create conda environment with python=3.7
  • Install PyTorch and torchvision packages within conda environment following instructions from PyTorch install guide
  • conda install -c conda-forge accimage
  • pip install tensorboard
  • pip install scikit-learn

Example usage

We have provided example model implementations using the Bayesian layers.

We also provide example usages and scripts to train/evaluate the models. The instructions for CIFAR10 examples is provided below, similar scripts for ImageNet and MNIST are available.

cd bayesian_torch

Training

To train Bayesian ResNet on CIFAR10, run this command:

Mean-field variational inference (Reparameterized Monte Carlo estimator)

sh scripts/train_bayesian_cifar.sh

Mean-field variational inference (Flipout Monte Carlo estimator)

sh scripts/train_bayesian_flipout_cifar.sh

To train deterministic ResNet on CIFAR10, run this command:

Vanilla

sh scripts/train_deterministic_cifar.sh

Evaluation

To evaluate Bayesian ResNet on CIFAR10, run this command:

Mean-field variational inference (Reparameterized Monte Carlo estimator)

sh scripts/test_bayesian_cifar.sh

Mean-field variational inference (Flipout Monte Carlo estimator)

sh scripts/test_bayesian_flipout_cifar.sh

To evaluate deterministic ResNet on CIFAR10, run this command:

Vanilla

sh scripts/test_deterministic_cifar.sh

Citing

If you use this code, please cite as:

@misc{krishnan2020bayesiantorch,
    author = {Ranganath Krishnan and Piero Esposito},
    title = {Bayesian-Torch: Bayesian neural network layers for uncertainty estimation},
    year = {2020},
    publisher = {GitHub},
    howpublished = {\url{https://github.com/IntelLabs/bayesian-torch}}
}

Cite the weight sampling methods as well: Blundell et al. 2015; Wen et al. 2018

Contributors

  • Ranganath Krishnan
  • Piero Esposito

This code is intended for researchers and developers, enables to quantify principled uncertainty estimates from deep neural network predictions using stochastic variational inference in Bayesian neural networks. Feedbacks, issues and contributions are welcome. Email to [email protected] for any questions.

Comments
  • The average should be taken over log probability rather than logits

    The average should be taken over log probability rather than logits

    https://github.com/IntelLabs/bayesian-torch/blob/7abcfe7ff3811c6a5be6326ab91a8d5cb1e8619f/bayesian_torch/examples/main_bayesian_cifar.py#L363-L367 I think the average across the MC runs should be taken over the log probability. However, the output here is the logits before the softmax operation. I think we may first run output = F.log_softmax(output, dim=1) and then take the average.

    There are two equivalent ways to take the average, which I think is more reasonable. The first way is

    for mc_run in range(args.num_mc):
        output, kl = model(input_var)
        output = F.log_softmax(output, dim=1)
        output_.append(output)
        kl_.append(kl)
    output = torch.mean(torch.stack(output_), dim=0)
    loss= F.nll_loss(output, target_var) # this is to replace the original cross_entropy_loss
    

    Or equivalently, we can first take the cross-entropy loss for each MC run, and average the losses at the end:

    loss = 0
    for mc_run in range(args.num_mc):
        output, kl = model(input_var)
        loss = loss + F.cross_entropy(output, target_var, dim=1)
        kl_.append(kl)
    loss = loss / args.num_mc  # this is to replace the original cross_entropy_loss
    
    question 
    opened by Nebularaid2000 5
  • KL divergence not changing during training

    KL divergence not changing during training

    Hello,

    I am trying to make a single layer BNN using the LinearReparameterization layer. I am unable to get it to give reasonable uncertainty estimates, so I started monitoring the KL term from the layers and noticed that it is not changing at all for each epoch. Even when I scale up the KL term in the loss, it remains unchanged.

    I am not sure if this is a bug, or if I am not doing the training correctly.

    My model

    class BNN(nn.Module):
        def __init__(self, input_dim, hidden_dim, output_dim=1):
            super().__init__()
            self.layer1 = LinearReparameterization(input_dim, hidden_dim)
            self.layerf = nn.Linear(hidden_dim, output_dim)
            
        def forward(self, x):
            kl_sum = 0
            x, kl = self.layer1(x)
            kl_sum += kl
            x = F.relu(x)
            x = self.layerf(x)
            return x, kl_sum
    

    and my training loop

    model = BNN(X_train.shape[-1], 100).to(device)
    optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
    criterion = torch.nn.MSELoss()
    
    for epoch in pbar:
            running_kld_loss = 0
            running_mse_loss = 0
            running_loss = 0
            for datapoints, labels in dataloader_train:
                optimizer.zero_grad()
                
                output, kl = model(datapoints)
                kl = get_kl_loss(model)
                
                # calculate loss with kl term for Bayesian layers
                mse_loss = criterion(output, labels)
                loss = mse_loss + kl * kld_beta / batch_size
                
                loss.backward()
                optimizer.step()
                
                running_mse_loss += mse_loss.detach().numpy()
                running_kld_loss += kl.detach().numpy()
                running_loss += loss.detach().numpy()
                
            status.update({
                'Epoch': epoch, 
                'loss': running_loss/len(dataloader_train),
                'kl': running_kld_loss/len(dataloader_train),
                'mse': running_mse_loss/len(dataloader_train)
            })
    

    When I print the KL loss, it starts at ~5.0 and does not decrease at all.

    opened by gkwt 4
  • Pytorch version issue

    Pytorch version issue

    Hi, it seems that this software only supports Pytorch 1.8.1 LTS or newer version. When I try to use this code in my own project(which is mainly based on Pytorch 1.4.0), some conflicts occur and seemingly unavoidable. Could you please update this software to make it also support some older version Pytorch, for example, 1.4.0. Great Thanks!!!

    opened by hebowei2000 4
  • conv_transpose2d parameter order problem

    conv_transpose2d parameter order problem

    https://github.com/IntelLabs/bayesian-torch/blob/f6f516e9b3721466aa0036c735475a421cc3ce80/bayesian_torch/layers/variational_layers/conv_variational.py#L784-L786

    image

    When I try to convert a deterministic autoencoder into a bayesian one with a ConvTranspose2d layer I get the error "Exception has occurred: TypeError conv_transpose2d(): argument 'groups' (position 7) must be int, not tuple" which I suspect comes from self.dilation and self.group which are swaped.

    opened by pierreosselin 3
  • Let the models return prediction only, saving KL Divergence as an attribute

    Let the models return prediction only, saving KL Divergence as an attribute

    Closes #7 .

    Let the user, if they want, to return predictions only on forward method, while saving kl divergence as an attribute. This is important to make it easier to integrate into PyTorch models.

    Also, it does not break the lib as it is: we added a new parameter on forward method that defaults to True and, if manually set to false, returns predictions only.

    Performed the following changes, on all layers:

    • Added return_kl on all forward methods, defaulting to True. If set to false, won't return kl.
    • Added a new kl attribute to each layer, updating it at every feedforward step. Useful when integrating with already-built PyTorch models.

    That should help integrating with PyTorch experiments while keeping backward compatibility towards this lib.

    enhancement 
    opened by piEsposito 3
  • Fix KL computation

    Fix KL computation

    Hello,

    I think there might be a few problems in your model definitions.

    In particular:

    • in resnet_flipout.py and resnet_variational.py you only sum the kl of the last block inside self.layerN
    • in resnet_flipout_large.py and resnet_variational_large.py you check for is None while you probably want is not None or actually no check at all since it can't be None in any reasonable setting. Also the str(layer) check is odd since it contains a BasicBlock or BottleNeck object (you're looping over an nn.Sequential of blocks). In fact in this code that string check is very likely superfluous (didn't test this, but I did include it in this PR as example)

    I hope you can confirm and perhaps fix these issues, which will help me (and maybe others) in building on your nice codebase :)

    opened by y0ast 3
  • Enable the Bayesian layer to freeze the parameters to their mean values

    Enable the Bayesian layer to freeze the parameters to their mean values

    I think it would be good to provide an option to freeze the weights and biases to the mean value when inferencing. The forward function would somehow look like this:

    def forward(self, input, sample=True):
        if sample:
            # do sampling and forward as in the current code
        else:
            # set weight=self.mu_weight
            # set bias=self.mu_bias
            # (optional) set kl=0, since it is useless in this case
        return out, kl
    
    opened by Nebularaid2000 2
  • FR: Enable forward method of Bayesian Layers to return value only for smoother integration with PyTorch

    FR: Enable forward method of Bayesian Layers to return value only for smoother integration with PyTorch

    It would be nice if we could store the KL divergence value as an attribute of the Bayesian Layers and return them on the forward method only if needed.

    With that we can have less friction on integration with PyTorch. being able to "plug and play" with bayesian-torch layers on deterministic models.

    It would be something like that:

    def forward(self, x, return_kl=False):
        ...
        self.kl = kl
    
        if return_kl:
            return out, kl
        return out   
    

    We then can get it from the bayesian layers when calculating the loss with no harm or hard changes to the code, which might encourage users to try the lib.

    I can work on that also.

    enhancement 
    opened by piEsposito 2
  • modifing the Scripts for any arbitrary output size

    modifing the Scripts for any arbitrary output size

    I am trying to use these repo for classification with 3 output nodes. However, in the fully connected layer, I got the error of size mismatch. Can you help me with this issue?

    question 
    opened by narminGhaffari 2
  • add mu_kernel to of delta_kernel in flipout layers?

    add mu_kernel to of delta_kernel in flipout layers?

    Hi,

    Shouldn't mu_kernel be added to delta_kernel in the code below?

    Best, Lewis

    diff --git a/bayesian_torch/layers/flipout_layers/conv_flipout.py b/bayesian_torch/layers/flipout_layers/conv_flipout.py
    index 4b3e88d..719cfdc 100644
    --- a/bayesian_torch/layers/flipout_layers/conv_flipout.py
    +++ b/bayesian_torch/layers/flipout_layers/conv_flipout.py
    @@ -165,7 +165,7 @@ class Conv1dFlipout(BaseVariationalLayer_):
             sigma_weight = torch.log1p(torch.exp(self.rho_kernel))
             eps_kernel = self.eps_kernel.data.normal_()
     
    -        delta_kernel = (sigma_weight * eps_kernel)
    +        delta_kernel = (sigma_weight * eps_kernel) + self.mu_kernel 
     
             kl = self.kl_div(self.mu_kernel, sigma_weight, self.prior_weight_mu,
                              self.prior_weight_sigma)
    
    opened by burntcobalt 2
  • Kernel_size

    Kernel_size

    The Conv2dReparameterization only allows kernels with same dim (e.g., 2×2) However, some CNN model has different kernels (e.g., in inceptionresnetv2, the kernel size in block17 is 1×7)

    So, I modified the code in conv_variational.py from:

            self.mu_kernel = Parameter(
                torch.Tensor(out_channels, in_channels // groups, kernel_size,
                             kernel_size))
            self.rho_kernel = Parameter(
                torch.Tensor(out_channels, in_channels // groups, kernel_size,
                             kernel_size))
            self.register_buffer(
                'eps_kernel',
                torch.Tensor(out_channels, in_channels // groups, kernel_size,
                             kernel_size),
                persistent=False)
            self.register_buffer(
                'prior_weight_mu',
                torch.Tensor(out_channels, in_channels // groups, kernel_size,
                             kernel_size),
                persistent=False)
            self.register_buffer(
                'prior_weight_sigma',
                torch.Tensor(out_channels, in_channels // groups, kernel_size,
                             kernel_size),
                persistent=False)
    

    to

            self.mu_kernel = Parameter(
                torch.Tensor(out_channels, in_channels // groups, kernel_size[0],
                             kernel_size[1]))
            self.rho_kernel = Parameter(
                torch.Tensor(out_channels, in_channels // groups, kernel_size[0],
                             kernel_size[1]))
            self.register_buffer(
                'eps_kernel',
                torch.Tensor(out_channels, in_channels // groups, kernel_size[0],
                             kernel_size[1]),
                persistent=False)
            self.register_buffer(
                'prior_weight_mu',
                torch.Tensor(out_channels, in_channels // groups, kernel_size[0],
                             kernel_size[1]),
                persistent=False)
            self.register_buffer(
                'prior_weight_sigma',
                torch.Tensor(out_channels, in_channels // groups, kernel_size[0],
                             kernel_size[1]),
                persistent=False)
    

    also, the kernel_size=d.kernel_size[0] was changes to kernel_size=d.kernel_size in dnn_to_cnn.py

    enhancement 
    opened by flydephone 1
  • How bayesian network be used in quantization?

    How bayesian network be used in quantization?

    @peteriz @jpablomch @ranganathkrishnan we can get the $\mu$ and $\sigma$ of each weight ,so how it can be used to quantization which mapping the $w_{float32 }$ into $w_{int8}$

    enhancement 
    opened by LeopoldACC 1
Releases(v0.3.0)
  • v0.3.0(Dec 14, 2022)

  • v0.2.0-alpha(Jan 27, 2022)

    Includes dnn_to_bnn new feature: An API to convert deterministic deep neural network (dnn) model of any architecture to Bayesian deep neural network (bnn) model, simplifying the model definition i.e. drop-in replacements of Convolutional, Linear and LSTM layers to corresponding Bayesian layers. This will enable seamless conversion of existing topology of larger models to Bayesian deep neural network models for extending towards uncertainty-aware applications.

    Source code(tar.gz)
    Source code(zip)
  • v0.2.0(Jan 27, 2022)

    Includes dnn_to_bnn new feature: An API to convert deterministic deep neural network (dnn) model of any architecture to Bayesian deep neural network (bnn) model, simplifying the model definition i.e. drop-in replacements of Convolutional, Linear and LSTM layers to corresponding Bayesian layers. This will enable seamless conversion of existing topology of larger models to Bayesian deep neural network models for extending towards uncertainty-aware applications.

    Full Changelog: https://github.com/IntelLabs/bayesian-torch/compare/v0.1...v0.2.0

    Source code(tar.gz)
    Source code(zip)
Owner
Intel Labs
Intel Labs
Koopman operator identification library in Python

pykoop pykoop is a Koopman operator identification library written in Python. It allows the user to specify Koopman lifting functions and regressors i

DECAR Systems Group 34 Jan 04, 2023
A best practice for tensorflow project template architecture.

A best practice for tensorflow project template architecture.

Mahmoud Gamal Salem 3.6k Dec 22, 2022
Make your AirPlay devices as TTS speakers

Apple AirPlayer Home Assistant integration component, make your AirPlay devices as TTS speakers. Before Use 2021.6.X or earlier Apple Airplayer compon

George Zhao 117 Dec 15, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022
Python implementation of Project Fluent

Project Fluent This is a collection of Python packages to use the Fluent localization system. python-fluent consists of these packages: fluent.syntax

Project Fluent 155 Dec 28, 2022
ML models and internal tensors 3D visualizer

The free Zetane Viewer is a tool to help understand and accelerate discovery in machine learning and artificial neural networks. It can be used to ope

Zetane Systems 787 Dec 30, 2022
Uncertain natural language inference

Uncertain Natural Language Inference This repository hosts the code for the following paper: Tongfei Chen*, Zhengping Jiang*, Adam Poliak, Keisuke Sak

Tongfei Chen 14 Sep 01, 2022
LightningFSL: Pytorch-Lightning implementations of Few-Shot Learning models.

LightningFSL: Few-Shot Learning with Pytorch-Lightning In this repo, a number of pytorch-lightning implementations of FSL algorithms are provided, inc

Xu Luo 76 Dec 11, 2022
Official Repsoitory for "Mish: A Self Regularized Non-Monotonic Neural Activation Function" [BMVC 2020]

Mish: Self Regularized Non-Monotonic Activation Function BMVC 2020 (Official Paper) Notes: (Click to expand) A considerably faster version based on CU

Xa9aX ツ 1.2k Dec 29, 2022
Cupytorch - A small framework mimics PyTorch using CuPy or NumPy

CuPyTorch CuPyTorch是一个小型PyTorch,名字来源于: 不同于已有的几个使用NumPy实现PyTorch的开源项目,本项目通过CuPy支持

Xingkai Yu 23 Aug 17, 2022
Locationinfo - A script helps the user to show network information such as ip address

Description This script helps the user to show network information such as ip ad

Roxcoder 1 Dec 30, 2021
[ICCV2021] Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Xuanchi Ren 44 Dec 03, 2022
Official PyTorch implementation of "BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation" (NeurIPS 2021)

BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation Official PyTorch implementation of the NeurIPS 2021 paper Mingcong Liu, Qiang

onion 462 Dec 29, 2022
It is modified Tensorflow 2.x version of Mask R-CNN

[TF 2.X] Mask R-CNN for Object Detection and Segmentation [Notice] : The original mask-rcnn uses the tensorflow 1.X version. I modified it for tensorf

Milner 34 Nov 09, 2022
Tensorflow 2 implementation of our high quality frame interpolation neural network

FILM: Frame Interpolation for Large Scene Motion Project | Paper | YouTube | Benchmark Scores Tensorflow 2 implementation of our high quality frame in

Google Research 1.6k Dec 28, 2022
Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database.

MIMIC-III Benchmarks Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database. Currently, the benchmark data

Chengxi Zang 6 Jan 02, 2023
Benchmarks for semi-supervised domain generalization.

Semi-Supervised Domain Generalization This code is the official implementation of the following paper: Semi-Supervised Domain Generalization with Stoc

Kaiyang 49 Dec 10, 2022
Art Project "Schrödinger's Game of Life"

Repo of the project "Team Creative Quantum AI: Schrödinger's Game of Life" Installation new conda env: conda create --name qcml python=3.8 conda activ

ℍ◮ℕℕ◭ℍ ℝ∈ᛔ∈ℝ 2 Sep 15, 2022
NitroFE is a Python feature engineering engine which provides a variety of modules designed to internally save past dependent values for providing continuous calculation.

NitroFE is a Python feature engineering engine which provides a variety of modules designed to internally save past dependent values for providing continuous calculation.

100 Sep 28, 2022
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023