[ICLR 2021, Spotlight] Large Scale Image Completion via Co-Modulated Generative Adversarial Networks

Overview

Large Scale Image Completion via Co-Modulated Generative Adversarial Networks, ICLR 2021 (Spotlight)

Demo | Paper

[NEW!] Time to play with our interactive web demo!

Numerous task-specific variants of conditional generative adversarial networks have been developed for image completion. Yet, a serious limitation remains that all existing algorithms tend to fail when handling large-scale missing regions. To overcome this challenge, we propose a generic new approach that bridges the gap between image-conditional and recent modulated unconditional generative architectures via co-modulation of both conditional and stochastic style representations. Also, due to the lack of good quantitative metrics for image completion, we propose the new Paired/Unpaired Inception Discriminative Score (P-IDS/U-IDS), which robustly measures the perceptual fidelity of inpainted images compared to real images via linear separability in a feature space. Experiments demonstrate superior performance in terms of both quality and diversity over state-of-the-art methods in free-form image completion and easy generalization to image-to-image translation.

Large Scale Image Completion via Co-Modulated Generative Adversarial Networks
Shengyu Zhao, Jonathan Cui, Yilun Sheng, Yue Dong, Xiao Liang, Eric I Chang, Yan Xu
Tsinghua University and Microsoft Research
arXiv | OpenReview

Overview

This repo is implemented upon and has the same dependencies as the official StyleGAN2 repo. We also provide a Dockerfile for Docker users. This repo currently supports:

  • Large scale image completion experiments on FFHQ and Places2
  • Image-to-image translation experiments on edges to photos and COCO-Stuff
  • Evaluation code of Paired/Unpaired Inception Discriminative Score (P-IDS/U-IDS)

Datasets

  • FFHQ dataset (in TFRecords format) can be downloaded following the StyleGAN2 repo.
  • Places2 dataset can be downloaded in this website (Places365-Challenge 2016 high-resolution images, training set and validation set). The raw images should be converted into TFRecords using dataset_tools/create_places2.py.

Training

The following script is for training on FFHQ. It will splits 10k images for validation. We recommend using 8 NVIDIA Tesla V100 GPUs for training. Training at 512x512 resolution takes about 1 week.

python run_training.py --data-dir=DATA_DIR --dataset=DATASET --metrics=ids10k --num-gpus=8

The following script is for training on Places2, which has a validation set of 36500 images:

python run_training.py --data-dir=DATA_DIR --dataset=DATASET --metrics=ids36k5 --total-kimg 50000 --num-gpus=8

Evaluation

The following script is for evaluation:

python run_metrics.py --data-dir=DATA_DIR --dataset=DATASET --network=CHECKPOINT_FILE(S) --metrics=METRIC(S) --num-gpus=1

Commonly used metrics are ids10k and ids36k5 (for FFHQ and Places2 respectively), which will compute P-IDS and U-IDS together with FID. By default, masks are generated randomly for evaluation, or you may append the metric name with -h0 ([0.0, 0.2]) to -h4 ([0.8, 1.0]) to specify the range of masked ratio.

Our pre-trained models are available on Google Drive. Below lists our provided pre-trained models:

Model name & URL Description
co-mod-gan-ffhq-9-025000.pkl Large scale image completion on FFHQ (512x512)
co-mod-gan-ffhq-10-025000.pkl Large scale image completion on FFHQ (1024x1024)
co-mod-gan-places2-050000.pkl Large scale image completion on Places2 (512x512)
co-mod-gan-coco-stuff-025000.pkl Image-to-image translation on COCO-Stuff (labels to photos) (512x512)
co-mod-gan-edges2shoes-025000.pkl Image-to-image translation on edges2shoes (256x256)
co-mod-gan-edges2handbags-025000.pkl Image-to-image translation on edges2handbags (256x256)

Use the following script to run the interactive demo locally:

python run_demo.py -d DATA_DIR/DATASET -c CHECKPOINT_FILE(S)

Citation

If you find this code helpful, please cite our paper:

@inproceedings{zhao2021comodgan,
  title={Large Scale Image Completion via Co-Modulated Generative Adversarial Networks},
  author={Zhao, Shengyu and Cui, Jonathan and Sheng, Yilun and Dong, Yue and Liang, Xiao and Chang, Eric I and Xu, Yan},
  booktitle={International Conference on Learning Representations (ICLR)},
  year={2021}
}
Owner
Shengyu Zhao
Undergraduate at IIIS, Tsinghua University. Working with MIT and Microsoft Research.
Shengyu Zhao
Code and description for my BSc Project, September 2021

BSc-Project Disclaimer: This repo consists of only the additional python scripts necessary to run the agent. To run the project on your own personal d

Matin Tavakoli 20 Jul 19, 2022
Generate Cartoon Images using Generative Adversarial Network

AvatarGAN ✨ Generate Cartoon Images using DC-GAN Deep Convolutional GAN is a generative adversarial network architecture. It uses a couple of guidelin

Aakash Jhawar 50 Dec 29, 2022
Training and Evaluation Code for Neural Volumes

Neural Volumes This repository contains training and evaluation code for the paper Neural Volumes. The method learns a 3D volumetric representation of

Meta Research 370 Dec 08, 2022
Bayesian Neural Networks in PyTorch

We present the new scheme to compute Monte Carlo estimator in Bayesian VI settings with almost no memory cost in GPU, regardles of the number of sampl

Jurijs Nazarovs 7 May 03, 2022
Official public repository of paper "Intention Adaptive Graph Neural Network for Category-Aware Session-Based Recommendation"

Intention Adaptive Graph Neural Network (IAGNN) This is the official repository of paper Intention Adaptive Graph Neural Network for Category-Aware Se

9 Nov 22, 2022
Small-bets - Ergodic Experiment With Python

Ergodic Experiment Based on this video. Run this experiment with this command: p

Michael Brant 3 Jan 11, 2022
Official implementation of "OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Temporal Association" in PyTorch.

openpifpaf Continuously tested on Linux, MacOS and Windows: New 2021 paper: OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Te

VITA lab at EPFL 50 Dec 29, 2022
Pytorch implementation of DeepMind's differentiable neural computer paper.

DNC pytorch This is a Pytorch implementation of DeepMind's Differentiable Neural Computer (DNC) architecture introduced in their recent Nature paper:

Yuanpu Xie 91 Nov 21, 2022
A Deep Learning Framework for Neural Derivative Hedging

NNHedge NNHedge is a PyTorch based framework for Neural Derivative Hedging. The following repository was implemented to ease the experiments of our pa

GUIJIN SON 17 Nov 14, 2022
Omniverse sample scripts - A guide for developing with Python scripts on NVIDIA Ominverse

Omniverse sample scripts ここでは、NVIDIA Omniverse ( https://www.nvidia.com/ja-jp/om

ft-lab (Yutaka Yoshisaka) 37 Nov 17, 2022
Cortex-compatible model server for Python and TensorFlow

Nucleus model server Nucleus is a model server for TensorFlow and generic Python models. It is compatible with Cortex clusters, Kubernetes clusters, a

Cortex Labs 14 Nov 27, 2022
Meta Learning for Semi-Supervised Few-Shot Classification

few-shot-ssl-public Code for paper Meta-Learning for Semi-Supervised Few-Shot Classification. [arxiv] Dependencies cv2 numpy pandas python 2.7 / 3.5+

Mengye Ren 501 Jan 08, 2023
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to

Mohamed Ali Souibgui 74 Jan 07, 2023
A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

2 Jul 25, 2022
This is the official implementation code repository of Underwater Light Field Retention : Neural Rendering for Underwater Imaging (Accepted by CVPR Workshop2022 NTIRE)

Underwater Light Field Retention : Neural Rendering for Underwater Imaging (UWNR) (Accepted by CVPR Workshop2022 NTIRE) Authors: Tian Ye†, Sixiang Che

jmucsx 17 Dec 14, 2022
TensorFlow implementation of AlexNet and its training and testing on ImageNet ILSVRC 2012 dataset

AlexNet training on ImageNet LSVRC 2012 This repository contains an implementation of AlexNet convolutional neural network and its training and testin

Matteo Dunnhofer 161 Nov 25, 2022
Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets.

Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets. Introduction We propose our dataloader API for loading and

1 Nov 19, 2021
Direct LiDAR Odometry: Fast Localization with Dense Point Clouds

Direct LiDAR Odometry: Fast Localization with Dense Point Clouds DLO is a lightweight and computationally-efficient frontend LiDAR odometry solution w

VECTR at UCLA 369 Dec 30, 2022
PyTorch evaluation code for Delving Deep into the Generalization of Vision Transformers under Distribution Shifts.

Out-of-distribution Generalization Investigation on Vision Transformers This repository contains PyTorch evaluation code for Delving Deep into the Gen

Chongzhi Zhang 72 Dec 13, 2022
[ICLR 2021] "CPT: Efficient Deep Neural Network Training via Cyclic Precision" by Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin

CPT: Efficient Deep Neural Network Training via Cyclic Precision Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin Accep

26 Oct 25, 2022