[ICLR 2021, Spotlight] Large Scale Image Completion via Co-Modulated Generative Adversarial Networks

Overview

Large Scale Image Completion via Co-Modulated Generative Adversarial Networks, ICLR 2021 (Spotlight)

Demo | Paper

[NEW!] Time to play with our interactive web demo!

Numerous task-specific variants of conditional generative adversarial networks have been developed for image completion. Yet, a serious limitation remains that all existing algorithms tend to fail when handling large-scale missing regions. To overcome this challenge, we propose a generic new approach that bridges the gap between image-conditional and recent modulated unconditional generative architectures via co-modulation of both conditional and stochastic style representations. Also, due to the lack of good quantitative metrics for image completion, we propose the new Paired/Unpaired Inception Discriminative Score (P-IDS/U-IDS), which robustly measures the perceptual fidelity of inpainted images compared to real images via linear separability in a feature space. Experiments demonstrate superior performance in terms of both quality and diversity over state-of-the-art methods in free-form image completion and easy generalization to image-to-image translation.

Large Scale Image Completion via Co-Modulated Generative Adversarial Networks
Shengyu Zhao, Jonathan Cui, Yilun Sheng, Yue Dong, Xiao Liang, Eric I Chang, Yan Xu
Tsinghua University and Microsoft Research
arXiv | OpenReview

Overview

This repo is implemented upon and has the same dependencies as the official StyleGAN2 repo. We also provide a Dockerfile for Docker users. This repo currently supports:

  • Large scale image completion experiments on FFHQ and Places2
  • Image-to-image translation experiments on edges to photos and COCO-Stuff
  • Evaluation code of Paired/Unpaired Inception Discriminative Score (P-IDS/U-IDS)

Datasets

  • FFHQ dataset (in TFRecords format) can be downloaded following the StyleGAN2 repo.
  • Places2 dataset can be downloaded in this website (Places365-Challenge 2016 high-resolution images, training set and validation set). The raw images should be converted into TFRecords using dataset_tools/create_places2.py.

Training

The following script is for training on FFHQ. It will splits 10k images for validation. We recommend using 8 NVIDIA Tesla V100 GPUs for training. Training at 512x512 resolution takes about 1 week.

python run_training.py --data-dir=DATA_DIR --dataset=DATASET --metrics=ids10k --num-gpus=8

The following script is for training on Places2, which has a validation set of 36500 images:

python run_training.py --data-dir=DATA_DIR --dataset=DATASET --metrics=ids36k5 --total-kimg 50000 --num-gpus=8

Evaluation

The following script is for evaluation:

python run_metrics.py --data-dir=DATA_DIR --dataset=DATASET --network=CHECKPOINT_FILE(S) --metrics=METRIC(S) --num-gpus=1

Commonly used metrics are ids10k and ids36k5 (for FFHQ and Places2 respectively), which will compute P-IDS and U-IDS together with FID. By default, masks are generated randomly for evaluation, or you may append the metric name with -h0 ([0.0, 0.2]) to -h4 ([0.8, 1.0]) to specify the range of masked ratio.

Our pre-trained models are available on Google Drive. Below lists our provided pre-trained models:

Model name & URL Description
co-mod-gan-ffhq-9-025000.pkl Large scale image completion on FFHQ (512x512)
co-mod-gan-ffhq-10-025000.pkl Large scale image completion on FFHQ (1024x1024)
co-mod-gan-places2-050000.pkl Large scale image completion on Places2 (512x512)
co-mod-gan-coco-stuff-025000.pkl Image-to-image translation on COCO-Stuff (labels to photos) (512x512)
co-mod-gan-edges2shoes-025000.pkl Image-to-image translation on edges2shoes (256x256)
co-mod-gan-edges2handbags-025000.pkl Image-to-image translation on edges2handbags (256x256)

Use the following script to run the interactive demo locally:

python run_demo.py -d DATA_DIR/DATASET -c CHECKPOINT_FILE(S)

Citation

If you find this code helpful, please cite our paper:

@inproceedings{zhao2021comodgan,
  title={Large Scale Image Completion via Co-Modulated Generative Adversarial Networks},
  author={Zhao, Shengyu and Cui, Jonathan and Sheng, Yilun and Dong, Yue and Liang, Xiao and Chang, Eric I and Xu, Yan},
  booktitle={International Conference on Learning Representations (ICLR)},
  year={2021}
}
Owner
Shengyu Zhao
Undergraduate at IIIS, Tsinghua University. Working with MIT and Microsoft Research.
Shengyu Zhao
SymPy-powered, Wolfram|Alpha-like answer engine totally in your browser, without backend computation

SymPy Beta SymPy Beta is a fork of SymPy Gamma. The purpose of this project is to run a SymPy-powered, Wolfram|Alpha-like answer engine totally in you

Liumeo 25 Dec 21, 2022
Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Mingrui Yu 3 Jan 07, 2022
Neural style in TensorFlow! 🎨

neural-style An implementation of neural style in TensorFlow. This implementation is a lot simpler than a lot of the other ones out there, thanks to T

Anish Athalye 5.5k Dec 29, 2022
Fast Learning of MNL Model From General Partial Rankings with Application to Network Formation Modeling

Fast-Partial-Ranking-MNL This repo provides a PyTorch implementation for the CopulaGNN models as described in the following paper: Fast Learning of MN

Xingjian Zhang 3 Aug 19, 2022
An NVDA add-on to split screen reader and audio from other programs to different sound channels

An NVDA add-on to split screen reader and audio from other programs to different sound channels (add-on idea credit: Tony Malykh)

Joseph Lee 7 Dec 25, 2022
Geometry-Aware Learning of Maps for Camera Localization (CVPR2018)

Geometry-Aware Learning of Maps for Camera Localization This is the PyTorch implementation of our CVPR 2018 paper "Geometry-Aware Learning of Maps for

NVIDIA Research Projects 321 Nov 26, 2022
OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark

Introduction English | 简体中文 MMAction2 is an open-source toolbox for video understanding based on PyTorch. It is a part of the OpenMMLab project. The m

OpenMMLab 2.7k Jan 07, 2023
[CVPR 2021] Exemplar-Based Open-Set Panoptic Segmentation Network (EOPSN)

EOPSN: Exemplar-Based Open-Set Panoptic Segmentation Network (CVPR 2021) PyTorch implementation for EOPSN. We propose open-set panoptic segmentation t

Jaedong Hwang 49 Dec 30, 2022
This is a re-implementation of TransGAN: Two Pure Transformers Can Make One Strong GAN (CVPR 2021) in PyTorch.

TransGAN: Two Transformers Can Make One Strong GAN [YouTube Video] Paper Authors: Yifan Jiang, Shiyu Chang, Zhangyang Wang CVPR 2021 This is re-implem

Ahmet Sarigun 79 Jan 05, 2023
A code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

A Benchmark for Rough Sketch Cleanup This is the code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Va

33 Dec 18, 2022
Repo for "Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks"

Summary This is the code for the paper Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks by Yanxiang Wang, Xian Zh

zhangxian 54 Jan 03, 2023
Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data

1 Meta-FDMIxup Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data. (ACM MM 2021) paper News! the rep

Fu Yuqian 44 Nov 18, 2022
GAN example for Keras. Cuz MNIST is too small and there should be something more realistic.

Keras-GAN-Animeface-Character GAN example for Keras. Cuz MNIST is too small and there should an example on something more realistic. Some results Trai

160 Sep 20, 2022
To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types

To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types, from a Database Taken From Dr. Wolberg reports his Clinic Cases.

Astitva Veer Garg 1 Jul 31, 2022
Automatic Differentiation Multipole Moment Molecular Forcefield

Automatic Differentiation Multipole Moment Molecular Forcefield Performance notes On a single gpu, using waterbox_31ang.pdb example from MPIDplugin wh

4 Jan 07, 2022
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
atmaCup #11 の Public 4th / Pricvate 5th Solution のリポジトリです。

#11 atmaCup 2021-07-09 ~ 2020-07-21 に行われた #11 [初心者歓迎! / 画像編] atmaCup のリポジトリです。結果は Public 4th / Private 5th でした。 フレームワークは PyTorch で、実装は pytorch-image-m

Tawara 12 Apr 07, 2022
This repository contains the source codes for the paper AtlasNet V2 - Learning Elementary Structures.

AtlasNet V2 - Learning Elementary Structures This work was build upon Thibault Groueix's AtlasNet and 3D-CODED projects. (you might want to have a loo

Théo Deprelle 123 Nov 11, 2022
Atif Hassan 103 Dec 14, 2022
Implementation of "Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency"

Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency (ICCV2021) Paper Link: https://arxiv.org/abs/2107.11355 This implementation bui

32 Nov 17, 2022