QR2Pass-project - A proof of concept for an alternative (passwordless) authentication system to a web server

Overview

QR2Pass

This is a proof of concept for an alternative (passwordless) authentication system to a web server. The authentication is based on public key cryptographic challenges, that can correctly responded only by the owner of the private key. Challenges are presented in the form of a QR code which are scanned by the mobile app.

The project is based on the procedure proposed by the Snap2Pass paper, but not on the corresponding implementation. In contrast to Snap2Pass, it offers only public key authentication (i.e no shared secret) and there is no OpenID integration.

The server is written in Django and the client (mobile app) is written in Swift for the iOS platform

You can check an online version of the server here

Overview

During registration, user provides their public key to the server. For authentication, server presents a challenge (unique nonce that expires after 60 seconds). User needs to sign the challenge with their private key part. Server verifies the signature and if it's valid, user is authenticated into the web site.

The web app consists of 2 parts:

  • the core app that handles the web view (what users sees in their browser)
  • the api app that handles the out-of-band communication (to/from the mobile app)

Protocol overview

To complete the registration request, or to initate a login process, the web app (core) constructs QR codes that are scanned by the mobile app

register QR

the registration QR has the following info:

   {
       "version": Int, 
       "email": String, 
       "nonce": String,
       "provider": URL, 
       "respond_to": URL,
       "action": action enum //action.register 
   }
  • version: version of the prorocol (currently ignored)
  • email: the email provided in the registration form. It is currently used as a user identifier
  • nonce: a unique nonce (used to avoid replay attacks)
  • provider: base url for the site (this is the identifier for the site)
  • respond_to: where the client should send its response
  • action: either login or register (register in this case, duh!)

login QR

the login QR has a very similar schema:

    {
        "version": Int,
        "challenge": String,
        "validTill": Date, 
        "provider": URL, 
        "respond_to": URL,
        "action": action.login //action.login 
    }

email, is not provided by the server, but in the client's request (from the mobile app)

Out of band requests/responses

We define as out-of-band the requests between the mobile app and the server (api part) Browser - server (core part) is in-band

Registration

A user needs first to head to the registration page (in their browser) where they are asked for their email. If the email is valid and not already used, a registration QR code is presented (for 60 seconds). The user uses the mobile app to scan the QR code.
The app decodes the QR code (see register schema above) and extracts the URL from the "respond_to field"
If there is no registration data in the app for this site (defined by the "provider" field), it will then send a register request to this URL using the following schema:

    {
        "version": Int,
        "email": String,
        "public_key": String, 
        "nonce": String 
    }
  • version: version of the prorocol (currently ignored)
  • email: the user's email
  • public_key: the user's public key
  • nonce: the nonce offered by the server

Upon receiving the request, the server will perform the following checks:

  • request has the valid schema
  • the nonce received is a valid one and has not expired.
  • the nonce received, corresponds to the specific user.

If the checks are succesful, server creates a user in its DB and redirects the browser to login page

Server responds using the following schema (out-of-band):

    {
        "version": Int,
        "email": String,
        "status": String, 
        "response_text": String 
    }
  • status: "ok"/"nok"
  • response_text: a message showing more info about the status (e.g "invalid token")

Loging in

A previously registered user can head to the login page to log in. A QR is presented (for 60 seconds) The user uses the mobile app to scan the QR code.
The app decodes the QR code (see login schema above) and extracts the URL from the "respond_to field".
If there is registration data in the app for this site (defined by the "provider" field), it will then send a register request to this URL using the following schema:

{

    "version": Int,
    "username": String,
    "challenge": String, 
    "response": String 

}
  • username: the email of the user
  • challenge: the nonce provided by the server
  • response: the nonce signed by the private key of the user

Similarly to registration process, server will make some initial checks on the request (valid schema and nonce, etc). If the intial checks succeed, the signed challenge will be checked against the public key of the user (stored during the registration process). If all checks are succesful, user is authenticated in the backend and the browser will be redirected to the user page.

Server responds to the app with a repsonse using the same response schema as the in the registration process

Running the project

Client

The ios app doesn't use any external libraries and it is compatible to ios > 12.4
Keep in mind that iOS won't accept initiating unsecure connections (plain HTTP). See here for more information and ways to circumvent that, in case you want to test this locally.
Alternatively, you can use ngrok to map an external https endpoint to your local machine

Server

pre-requisites

The server uses redis for Django channels backend and for temporary storage (nonces), so you need to have redis running locally or remotely.
It also uses daphne as an asynchronous server. You can invoke daphne by running:

daphne qr2pass.asgi:application --port <PORT> --bind 0.0.0.0 -v2

but locally you can also use the usual runserver command:

python manage.py runserver

requirements

  • create a virtual environment
  • activate it
  • pip3 install -r requirements.txt

Settings

The default settings are defined in the settings/defaults.py file.
You need to fill in some additional settings corresponding to your deployment environment (see deployment-template.py) and define the DJANGO_SETTINGS_MODULE environmental variable for details) to point to your settings (see here)

An onlinel learning to rank python codebase.

OLTR Online learning to rank python codebase. The code related to Pairwise Differentiable Gradient Descent (ranker/PDGDLinearRanker.py) is copied from

ielab 5 Jul 18, 2022
TensorLight - A high-level framework for TensorFlow

TensorLight is a high-level framework for TensorFlow-based machine intelligence applications. It reduces boilerplate code and enables advanced feature

Benjamin Kan 10 Jul 31, 2022
Unofficial PyTorch Implementation of "Augmenting Convolutional networks with attention-based aggregation"

Pytorch Implementation of Augmenting Convolutional networks with attention-based aggregation This is the unofficial PyTorch Implementation of "Augment

DK 20 Sep 09, 2022
(NeurIPS 2021) Realistic Evaluation of Transductive Few-Shot Learning

Realistic evaluation of transductive few-shot learning Introduction This repo contains the code for our NeurIPS 2021 submitted paper "Realistic evalua

Olivier Veilleux 14 Dec 13, 2022
Enhancing Knowledge Tracing via Adversarial Training

Enhancing Knowledge Tracing via Adversarial Training This repository contains source code for the paper "Enhancing Knowledge Tracing via Adversarial T

Xiaopeng Guo 14 Oct 24, 2022
A collection of loss functions for medical image segmentation

A collection of loss functions for medical image segmentation

Jun 3.1k Jan 03, 2023
Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically.

Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically. The collected data will then be used to train a deep neural network that can

Martin Valchev 3 Apr 24, 2022
Libtorch yolov3 deepsort

Overview It is for my undergrad thesis in Tsinghua University. There are four modules in the project: Detection: YOLOv3 Tracking: SORT and DeepSORT Pr

Xu Wei 226 Dec 13, 2022
PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal Convolutions for Action Recognition"

R2Plus1D-PyTorch PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal

Irhum Shafkat 342 Dec 16, 2022
Breast-Cancer-Prediction

Breast-Cancer-Prediction Trying to predict whether the cancer is benign or malignant using REGRESSION MODELS in Python. Team Members NAME ROLL-NUMBER

Shyamdev Krishnan J 3 Feb 18, 2022
Sequence lineage information extracted from RKI sequence data repo

Pango lineage information for German SARS-CoV-2 sequences This repository contains a join of the metadata and pango lineage tables of all German SARS-

Cornelius Roemer 24 Oct 26, 2022
Source code for CVPR 2020 paper "Learning to Forget for Meta-Learning"

L2F - Learning to Forget for Meta-Learning Sungyong Baik, Seokil Hong, Kyoung Mu Lee Source code for CVPR 2020 paper "Learning to Forget for Meta-Lear

Sungyong Baik 29 May 22, 2022
PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition.

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
MetaBalance: High-Performance Neural Networks for Class-Imbalanced Data

This repository is the official PyTorch implementation of Meta-Balance. Find the paper on arxiv MetaBalance: High-Performance Neural Networks for Clas

Arpit Bansal 20 Oct 18, 2021
Extreme Lightwegith Portrait Segmentation

Extreme Lightwegith Portrait Segmentation Please go to this link to download code Requirements python 3 pytorch = 0.4.1 torchvision==0.2.1 opencv-pyt

HYOJINPARK 59 Dec 16, 2022
TensorFlow 2 AI/ML library wrapper for openFrameworks

ofxTensorFlow2 This is an openFrameworks addon for the TensorFlow 2 ML (Machine Learning) library

Center for Art and Media Karlsruhe 96 Dec 31, 2022
HAT: Hierarchical Aggregation Transformers for Person Re-identification

HAT: Hierarchical Aggregation Transformers for Person Re-identification

11 Sep 05, 2022
Simulate genealogical trees and genomic sequence data using population genetic models

msprime msprime is a population genetics simulator based on tskit. Msprime can simulate random ancestral histories for a sample of individuals (consis

Tskit developers 150 Dec 14, 2022
AugLiChem - The augmentation library for chemical systems.

AugLiChem Welcome to AugLiChem! The augmentation library for chemical systems. This package supports augmentation for both crystaline and molecular sy

BaratiLab 17 Jan 08, 2023
Official code implementation for "Personalized Federated Learning using Hypernetworks"

Personalized Federated Learning using Hypernetworks This is an official implementation of Personalized Federated Learning using Hypernetworks paper. [

Aviv Shamsian 121 Dec 25, 2022