QR2Pass-project - A proof of concept for an alternative (passwordless) authentication system to a web server

Overview

QR2Pass

This is a proof of concept for an alternative (passwordless) authentication system to a web server. The authentication is based on public key cryptographic challenges, that can correctly responded only by the owner of the private key. Challenges are presented in the form of a QR code which are scanned by the mobile app.

The project is based on the procedure proposed by the Snap2Pass paper, but not on the corresponding implementation. In contrast to Snap2Pass, it offers only public key authentication (i.e no shared secret) and there is no OpenID integration.

The server is written in Django and the client (mobile app) is written in Swift for the iOS platform

You can check an online version of the server here

Overview

During registration, user provides their public key to the server. For authentication, server presents a challenge (unique nonce that expires after 60 seconds). User needs to sign the challenge with their private key part. Server verifies the signature and if it's valid, user is authenticated into the web site.

The web app consists of 2 parts:

  • the core app that handles the web view (what users sees in their browser)
  • the api app that handles the out-of-band communication (to/from the mobile app)

Protocol overview

To complete the registration request, or to initate a login process, the web app (core) constructs QR codes that are scanned by the mobile app

register QR

the registration QR has the following info:

   {
       "version": Int, 
       "email": String, 
       "nonce": String,
       "provider": URL, 
       "respond_to": URL,
       "action": action enum //action.register 
   }
  • version: version of the prorocol (currently ignored)
  • email: the email provided in the registration form. It is currently used as a user identifier
  • nonce: a unique nonce (used to avoid replay attacks)
  • provider: base url for the site (this is the identifier for the site)
  • respond_to: where the client should send its response
  • action: either login or register (register in this case, duh!)

login QR

the login QR has a very similar schema:

    {
        "version": Int,
        "challenge": String,
        "validTill": Date, 
        "provider": URL, 
        "respond_to": URL,
        "action": action.login //action.login 
    }

email, is not provided by the server, but in the client's request (from the mobile app)

Out of band requests/responses

We define as out-of-band the requests between the mobile app and the server (api part) Browser - server (core part) is in-band

Registration

A user needs first to head to the registration page (in their browser) where they are asked for their email. If the email is valid and not already used, a registration QR code is presented (for 60 seconds). The user uses the mobile app to scan the QR code.
The app decodes the QR code (see register schema above) and extracts the URL from the "respond_to field"
If there is no registration data in the app for this site (defined by the "provider" field), it will then send a register request to this URL using the following schema:

    {
        "version": Int,
        "email": String,
        "public_key": String, 
        "nonce": String 
    }
  • version: version of the prorocol (currently ignored)
  • email: the user's email
  • public_key: the user's public key
  • nonce: the nonce offered by the server

Upon receiving the request, the server will perform the following checks:

  • request has the valid schema
  • the nonce received is a valid one and has not expired.
  • the nonce received, corresponds to the specific user.

If the checks are succesful, server creates a user in its DB and redirects the browser to login page

Server responds using the following schema (out-of-band):

    {
        "version": Int,
        "email": String,
        "status": String, 
        "response_text": String 
    }
  • status: "ok"/"nok"
  • response_text: a message showing more info about the status (e.g "invalid token")

Loging in

A previously registered user can head to the login page to log in. A QR is presented (for 60 seconds) The user uses the mobile app to scan the QR code.
The app decodes the QR code (see login schema above) and extracts the URL from the "respond_to field".
If there is registration data in the app for this site (defined by the "provider" field), it will then send a register request to this URL using the following schema:

{

    "version": Int,
    "username": String,
    "challenge": String, 
    "response": String 

}
  • username: the email of the user
  • challenge: the nonce provided by the server
  • response: the nonce signed by the private key of the user

Similarly to registration process, server will make some initial checks on the request (valid schema and nonce, etc). If the intial checks succeed, the signed challenge will be checked against the public key of the user (stored during the registration process). If all checks are succesful, user is authenticated in the backend and the browser will be redirected to the user page.

Server responds to the app with a repsonse using the same response schema as the in the registration process

Running the project

Client

The ios app doesn't use any external libraries and it is compatible to ios > 12.4
Keep in mind that iOS won't accept initiating unsecure connections (plain HTTP). See here for more information and ways to circumvent that, in case you want to test this locally.
Alternatively, you can use ngrok to map an external https endpoint to your local machine

Server

pre-requisites

The server uses redis for Django channels backend and for temporary storage (nonces), so you need to have redis running locally or remotely.
It also uses daphne as an asynchronous server. You can invoke daphne by running:

daphne qr2pass.asgi:application --port <PORT> --bind 0.0.0.0 -v2

but locally you can also use the usual runserver command:

python manage.py runserver

requirements

  • create a virtual environment
  • activate it
  • pip3 install -r requirements.txt

Settings

The default settings are defined in the settings/defaults.py file.
You need to fill in some additional settings corresponding to your deployment environment (see deployment-template.py) and define the DJANGO_SETTINGS_MODULE environmental variable for details) to point to your settings (see here)

Toolbox of models, callbacks, and datasets for AI/ML researchers.

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch Website • Installation • Main

Pytorch Lightning 1.4k Dec 30, 2022
Reproduce ResNet-v2(Identity Mappings in Deep Residual Networks) with MXNet

Reproduce ResNet-v2 using MXNet Requirements Install MXNet on a machine with CUDA GPU, and it's better also installed with cuDNN v5 Please fix the ran

Wei Wu 531 Dec 04, 2022
Classic Papers for Beginners and Impact Scope for Authors.

There have been billions of academic papers around the world. However, maybe only 0.0...01% among them are valuable or are worth reading. Since our limited life has never been forever, TopPaper provi

Qiulin Zhang 228 Dec 18, 2022
Repo for CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning

CReST in Tensorflow 2 Code for the paper: "CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning" by Chen Wei, Ki

Google Research 75 Nov 01, 2022
One Million Scenes for Autonomous Driving

ONCE Benchmark This is a reproduced benchmark for 3D object detection on the ONCE (One Million Scenes) dataset. The code is mainly based on OpenPCDet.

148 Dec 28, 2022
Unofficial Implement PU-Transformer

PU-Transformer-pytorch Pytorch unofficial implementation of PU-Transformer (PU-Transformer: Point Cloud Upsampling Transformer) https://arxiv.org/abs/

Lee Hyung Jun 7 Sep 21, 2022
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Dec 31, 2022
Unpaired Caricature Generation with Multiple Exaggerations

CariMe-pytorch The official pytorch implementation of the paper "CariMe: Unpaired Caricature Generation with Multiple Exaggerations" CariMe: Unpaired

Gu Zheng 37 Dec 30, 2022
PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks

Code for the paper "PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks" (ICPR 2020)

Wenwen Yu 498 Dec 24, 2022
Spectralformer: Rethinking hyperspectral image classification with transformers

The code in this toolbox implements the "Spectralformer: Rethinking hyperspectral image classification with transformers". More specifically, it is detailed as follow.

Danfeng Hong 104 Jan 04, 2023
PyTorch Implementation of NCSOFT's FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis

FastPitchFormant - PyTorch Implementation PyTorch Implementation of FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis. Qu

Keon Lee 63 Jan 02, 2023
Benchmark tools for Compressive LiDAR-to-map registration

Benchmark tools for Compressive LiDAR-to-map registration This repo contains the released version of code and datasets used for our IROS 2021 paper: "

Allie 9 Nov 24, 2022
Code for weakly supervised segmentation of a single class

SingleClassRL Implementation of weak single object segmentation from paper "Regularized Loss for Weakly Supervised Single Class Semantic Segmentation"

16 Nov 14, 2022
《Fst Lerning of Temporl Action Proposl vi Dense Boundry Genertor》(AAAI 2020)

Update 2020.03.13: Release tensorflow-version and pytorch-version DBG complete code. 2019.11.12: Release tensorflow-version DBG inference code. 2019.1

Tencent 338 Dec 16, 2022
[EMNLP 2021] Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training

RoSTER The source code used for Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training, p

Yu Meng 60 Dec 30, 2022
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

Sun Yi 201 Nov 21, 2022
Count GitHub Stars ⭐

Count GitHub Stars per Day ⭐ Track GitHub stars per day over a date range to measure the open-source popularity of different repositories. Requirement

Ultralytics 20 Nov 20, 2022
RIM: Reliable Influence-based Active Learning on Graphs.

RIM: Reliable Influence-based Active Learning on Graphs. This repository is the official implementation of RIM. Requirements To install requirements:

Wentao Zhang 4 Aug 29, 2022
A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.

TCV-X21 validation for divertor turbulence simulations Quick links Intro Welcome to TCV-X21. We're glad you've found us! This repository is designed t

0 Dec 18, 2021
UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022