QR2Pass-project - A proof of concept for an alternative (passwordless) authentication system to a web server

Overview

QR2Pass

This is a proof of concept for an alternative (passwordless) authentication system to a web server. The authentication is based on public key cryptographic challenges, that can correctly responded only by the owner of the private key. Challenges are presented in the form of a QR code which are scanned by the mobile app.

The project is based on the procedure proposed by the Snap2Pass paper, but not on the corresponding implementation. In contrast to Snap2Pass, it offers only public key authentication (i.e no shared secret) and there is no OpenID integration.

The server is written in Django and the client (mobile app) is written in Swift for the iOS platform

You can check an online version of the server here

Overview

During registration, user provides their public key to the server. For authentication, server presents a challenge (unique nonce that expires after 60 seconds). User needs to sign the challenge with their private key part. Server verifies the signature and if it's valid, user is authenticated into the web site.

The web app consists of 2 parts:

  • the core app that handles the web view (what users sees in their browser)
  • the api app that handles the out-of-band communication (to/from the mobile app)

Protocol overview

To complete the registration request, or to initate a login process, the web app (core) constructs QR codes that are scanned by the mobile app

register QR

the registration QR has the following info:

   {
       "version": Int, 
       "email": String, 
       "nonce": String,
       "provider": URL, 
       "respond_to": URL,
       "action": action enum //action.register 
   }
  • version: version of the prorocol (currently ignored)
  • email: the email provided in the registration form. It is currently used as a user identifier
  • nonce: a unique nonce (used to avoid replay attacks)
  • provider: base url for the site (this is the identifier for the site)
  • respond_to: where the client should send its response
  • action: either login or register (register in this case, duh!)

login QR

the login QR has a very similar schema:

    {
        "version": Int,
        "challenge": String,
        "validTill": Date, 
        "provider": URL, 
        "respond_to": URL,
        "action": action.login //action.login 
    }

email, is not provided by the server, but in the client's request (from the mobile app)

Out of band requests/responses

We define as out-of-band the requests between the mobile app and the server (api part) Browser - server (core part) is in-band

Registration

A user needs first to head to the registration page (in their browser) where they are asked for their email. If the email is valid and not already used, a registration QR code is presented (for 60 seconds). The user uses the mobile app to scan the QR code.
The app decodes the QR code (see register schema above) and extracts the URL from the "respond_to field"
If there is no registration data in the app for this site (defined by the "provider" field), it will then send a register request to this URL using the following schema:

    {
        "version": Int,
        "email": String,
        "public_key": String, 
        "nonce": String 
    }
  • version: version of the prorocol (currently ignored)
  • email: the user's email
  • public_key: the user's public key
  • nonce: the nonce offered by the server

Upon receiving the request, the server will perform the following checks:

  • request has the valid schema
  • the nonce received is a valid one and has not expired.
  • the nonce received, corresponds to the specific user.

If the checks are succesful, server creates a user in its DB and redirects the browser to login page

Server responds using the following schema (out-of-band):

    {
        "version": Int,
        "email": String,
        "status": String, 
        "response_text": String 
    }
  • status: "ok"/"nok"
  • response_text: a message showing more info about the status (e.g "invalid token")

Loging in

A previously registered user can head to the login page to log in. A QR is presented (for 60 seconds) The user uses the mobile app to scan the QR code.
The app decodes the QR code (see login schema above) and extracts the URL from the "respond_to field".
If there is registration data in the app for this site (defined by the "provider" field), it will then send a register request to this URL using the following schema:

{

    "version": Int,
    "username": String,
    "challenge": String, 
    "response": String 

}
  • username: the email of the user
  • challenge: the nonce provided by the server
  • response: the nonce signed by the private key of the user

Similarly to registration process, server will make some initial checks on the request (valid schema and nonce, etc). If the intial checks succeed, the signed challenge will be checked against the public key of the user (stored during the registration process). If all checks are succesful, user is authenticated in the backend and the browser will be redirected to the user page.

Server responds to the app with a repsonse using the same response schema as the in the registration process

Running the project

Client

The ios app doesn't use any external libraries and it is compatible to ios > 12.4
Keep in mind that iOS won't accept initiating unsecure connections (plain HTTP). See here for more information and ways to circumvent that, in case you want to test this locally.
Alternatively, you can use ngrok to map an external https endpoint to your local machine

Server

pre-requisites

The server uses redis for Django channels backend and for temporary storage (nonces), so you need to have redis running locally or remotely.
It also uses daphne as an asynchronous server. You can invoke daphne by running:

daphne qr2pass.asgi:application --port <PORT> --bind 0.0.0.0 -v2

but locally you can also use the usual runserver command:

python manage.py runserver

requirements

  • create a virtual environment
  • activate it
  • pip3 install -r requirements.txt

Settings

The default settings are defined in the settings/defaults.py file.
You need to fill in some additional settings corresponding to your deployment environment (see deployment-template.py) and define the DJANGO_SETTINGS_MODULE environmental variable for details) to point to your settings (see here)

Repository of our paper 'Refer-it-in-RGBD' in CVPR 2021

Refer-it-in-RGBD This is the repository of our paper 'Refer-it-in-RGBD: A Bottom-up Approach for 3D Visual Grounding in RGBD Images' in CVPR 2021 Pape

Haolin Liu 34 Nov 07, 2022
'A C2C E-COMMERCE TRUST MODEL BASED ON REPUTATION' Python implementation

Project description A library providing functionalities to calculate reputation and degree of trust on C2C ecommerce platforms. The work is fully base

Davide Bigotti 2 Dec 14, 2022
The reference baseline of final exam for XMU machine learning course

Mini-NICO Baseline The baseline is a reference method for the final exam of machine learning course. Requirements Installation we use /python3.7 /torc

JoaquinChou 3 Dec 29, 2021
PyTorch implementation of MICCAI 2018 paper "Liver Lesion Detection from Weakly-labeled Multi-phase CT Volumes with a Grouped Single Shot MultiBox Detector"

Grouped SSD (GSSD) for liver lesion detection from multi-phase CT Note: the MICCAI 2018 paper only covers the multi-phase lesion detection part of thi

Sang-gil Lee 36 Oct 12, 2022
Deepfake Scanner by Deepware.

Deepware Scanner (CLI) This repository contains the command-line deepfake scanner tool with the pre-trained models that are currently used at deepware

deepware 110 Jan 02, 2023
Robotic Process Automation in Windows and Linux by using Driagrams.net BPMN diagrams.

BPMN_RPA Robotic Process Automation in Windows and Linux by using BPMN diagrams. With this Framework you can draw Business Process Model Notation base

23 Dec 14, 2022
Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

El Bruno 3 Mar 30, 2022
Session-based Recommendation, CoHHN, price preferences, interest preferences, Heterogeneous Hypergraph, Co-guided Learning, SIGIR2022

This is our implementation for the paper: Price DOES Matter! Modeling Price and Interest Preferences in Session-based Recommendation Xiaokun Zhang, Bo

Xiaokun Zhang 27 Dec 02, 2022
Users can free try their models on SIDD dataset based on this code

SIDD benchmark 1 Train python train.py If you want to train your network, just modify the yaml in the options folder. 2 Validation python validation.p

Yuzhi ZHAO 2 May 20, 2022
Trading and Backtesting environment for training reinforcement learning agent or simple rule base algo.

TradingGym TradingGym is a toolkit for training and backtesting the reinforcement learning algorithms. This was inspired by OpenAI Gym and imitated th

Yvictor 1.1k Jan 02, 2023
Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh

generate_cloud_points Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh. Run python disp_mesh.py Or you

Peng Yu 2 Dec 24, 2021
Easy-to-use micro-wrappers for Gym and PettingZoo based RL Environments

SuperSuit introduces a collection of small functions which can wrap reinforcement learning environments to do preprocessing ('microwrappers'). We supp

Farama Foundation 357 Jan 06, 2023
Pre-Training 3D Point Cloud Transformers with Masked Point Modeling

Point-BERT: Pre-Training 3D Point Cloud Transformers with Masked Point Modeling Created by Xumin Yu*, Lulu Tang*, Yongming Rao*, Tiejun Huang, Jie Zho

Lulu Tang 306 Jan 06, 2023
Make your AirPlay devices as TTS speakers

Apple AirPlayer Home Assistant integration component, make your AirPlay devices as TTS speakers. Before Use 2021.6.X or earlier Apple Airplayer compon

George Zhao 117 Dec 15, 2022
Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Google Cloud Storage

Keepsake Version control for machine learning. Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Goo

Replicate 1.6k Dec 29, 2022
Neural Magic Eye: Learning to See and Understand the Scene Behind an Autostereogram, arXiv:2012.15692.

Neural Magic Eye Preprint | Project Page | Colab Runtime Official PyTorch implementation of the preprint paper "NeuralMagicEye: Learning to See and Un

Zhengxia Zou 56 Jul 15, 2022
Underwater industrial application yolov5m6

This project wins the intelligent algorithm contest finalist award and stands out from over 2000teams in China Underwater Robot Professional Contest, entering the final of China Underwater Robot Prof

8 Nov 09, 2022
🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗

🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗 This year's first semester Club Info challenge will put you at the head of a car racing

ClubINFO INGI (UCLouvain) 6 Dec 10, 2021
Training Cifar-10 Classifier Using VGG16

opevcvdl-hw3 This project uses pytorch and Qt to achieve the requirements. Version Python 3.6 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.

Kenny Cheng 3 Aug 17, 2022
The self-supervised goal reaching benchmark introduced in Discovering and Achieving Goals via World Models

Lexa-Benchmark Codebase for the self-supervised goal reaching benchmark introduced in 'Discovering and Achieving Goals via World Models'. Setup Create

1 Oct 14, 2021