Code for Temporally Abstract Partial Models

Overview

Code for Temporally Abstract Partial Models

Accompanies the code for the experimental section of the paper: Temporally Abstract Partial Models, Khetarpal, Ahmed, Comanici and Precup, 2021 that is to be published at NeurIPS 2021.

Installation

  1. Clone the deepmind-research repository and cd into this directory:
git clone https://github.com/deepmind/affordances_option_models.git
  1. Now install the requirements to your system pip install -r ./requirements.txt. It is recommended to use a virtualenv to isolate dependencies.

For example:

git clone https://github.com/deepmind/affordances_option_models.git

python3 -m virtualenv affordances
source affordances/bin/activate

pip install -r affordances_option_models/requirements.txt

Usage

  1. The first step of the experiment is to build, train and save the low level options: python3 -m affordances_option_models.lp_learn_options --save_path ./options which will save the option policies into ./options/args/.... The low level options are trained by creating a reward matrix for the 75 options (see option_utils.check_option_termination) and then running value iteration.
  2. The next step is to learn the option models, policy over options and affordance models all online: python3 -m affordances_option_models.lp_learn_model_from_options --path_to_options=./options/gamma0.99/max_iterations1000/options/. See Arguments below to see how to select --affordances_name.

Arguments

  1. The default arguments for lp_learn_options.py will produce a reasonable set of option policies.
  2. For lp_learn_model_from_options.py use the argument --affordances_name to switch between the affordance that will be used for model learning. For the heuristic affordances (everything, only_pickup_drop and only_relevant_pickup_drop) the model learned will be evaluated via value iteration (i.e. planning) with every other affordance type. For the learned affordances, only learned affordances will be used in value iteration.

Experiments in Section 5.1

To reproduce the experiments with heuristics use the command

python3 -m affordances_option_models.lp_learn_model_from_options  \
--num_rollout_nodes=1 --total_steps=50000000 \
--seed=0 --affordances_name=everything

and run this command for every combination of the arguments:

  • --seed=: 0, 1, 2, 3
  • --affordances_name=: everything, only_pickup_drop, only_relevant_pickup_drop.

Experiments in Section 5.2

To reproduce the experiments with learned affordances use the command

python3 -m affordances_option_models.lp_learn_model_from_options  \
--num_rollout_nodes=1 --total_steps=50000000 --affordances_name=learned \
--seed=0 --affordances_threshold=0.0

and run this command for every combination of the arguments:

  • --seed=: 0, 1, 2, 3
  • --affordances_threshold=: 0.0, 0.1, 0.25, 0.5, 0.75.

Citation

If you use this codebase in your research, please cite the paper:

@misc{khetarpal2021temporally,
      title={Temporally Abstract Partial Models},
      author={Khimya Khetarpal and Zafarali Ahmed and Gheorghe Comanici and Doina Precup},
      year={2021},
      eprint={2108.03213},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Disclaimer

This is not an official Google product.

Owner
DeepMind
DeepMind
A TensorFlow implementation of DeepMind's WaveNet paper

A TensorFlow implementation of DeepMind's WaveNet paper This is a TensorFlow implementation of the WaveNet generative neural network architecture for

Igor Babuschkin 5.3k Dec 28, 2022
Source code for the NeurIPS 2021 paper "On the Second-order Convergence Properties of Random Search Methods"

Second-order Convergence Properties of Random Search Methods This repository the paper "On the Second-order Convergence Properties of Random Search Me

Adamos Solomou 0 Nov 13, 2021
Lava-DL, but with PyTorch-Lightning flavour

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Sami BARCHID 4 Oct 31, 2022
This is the official pytorch implementation of Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation(TESKD)

Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation (TESKD) By Zheng Li[1,4], Xiang Li[2], Lingfeng Yang[2,4], Jian Yang[2], Zh

Zheng Li 9 Sep 26, 2022
KIND: an Italian Multi-Domain Dataset for Named Entity Recognition

KIND (Kessler Italian Named-entities Dataset) KIND is an Italian dataset for Named-Entity Recognition. It contains more than one million tokens with t

Digital Humanities 5 Jun 21, 2022
Tensorflow implementation for Self-supervised Graph Learning for Recommendation

If the compilation is successful, the evaluator of cpp implementation will be called automatically. Otherwise, the evaluator of python implementation will be called.

152 Jan 07, 2023
Transformer part of 12th place solution in Riiid! Answer Correctness Prediction

kaggle_riiid Transformer part of 12th place solution in Riiid! Answer Correctness Prediction. Please see here for more information. Execution You need

Sakami Kosuke 2 Apr 23, 2022
Point cloud processing tool library.

Point Cloud ToolBox This point cloud processing tool library can be used to process point clouds, 3d meshes, and voxels. Environment python 3.7.5 Dep

ZhangXinyun 40 Dec 09, 2022
Implementation of Geometric Vector Perceptron, a simple circuit for 3d rotation equivariance for learning over large biomolecules, in Pytorch. Idea proposed and accepted at ICLR 2021

Geometric Vector Perceptron Implementation of Geometric Vector Perceptron, a simple circuit with 3d rotation equivariance for learning over large biom

Phil Wang 59 Nov 24, 2022
QueryFuzz implements a metamorphic testing approach to test Datalog engines.

Datalog is a popular query language with applications in several domains. Like any complex piece of software, Datalog engines may contain bugs. The mo

34 Sep 10, 2022
基于Pytorch实现优秀的自然图像分割框架!(包括FCN、U-Net和Deeplab)

语义分割学习实验-基于VOC数据集 usage: 下载VOC数据集,将JPEGImages SegmentationClass两个文件夹放入到data文件夹下。 终端切换到目标目录,运行python train.py -h查看训练 (torch) Li Xiang 28 Dec 21, 2022

This program can detect your face and add an Christams hat on the top of your head

Auto_Christmas This program can detect your face and add a Christmas hat to the top of your head. just run the Auto_Christmas.py, then you can see the

3 Dec 22, 2021
Code and data for "Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning" (EMNLP 2021).

GD-VCR Code for Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning (EMNLP 2021). Research Questions and Aims: How well can a model perform o

Da Yin 24 Oct 13, 2022
X-VLM: Multi-Grained Vision Language Pre-Training

X-VLM: learning multi-grained vision language alignments Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual Concepts. Yan Zeng, Xi

Yan Zeng 286 Dec 23, 2022
Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition - NeurIPS2021

Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition Project Page | Video | Paper Implementation for Neural-PIL. A novel method wh

Computergraphics (University of Tübingen) 64 Dec 29, 2022
DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers

DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers Authors: Jaemin Cho, Abhay Zala, and Mohit Bansal (

Jaemin Cho 98 Dec 15, 2022
This repository contains the code used for the implementation of the paper "Probabilistic Regression with HuberDistributions"

Public_prob_regression_with_huber_distributions This repository contains the code used for the implementation of the paper "Probabilistic Regression w

David Mohlin 1 Dec 04, 2021
Code for Ditto: Building Digital Twins of Articulated Objects from Interaction

Ditto: Building Digital Twins of Articulated Objects from Interaction Zhenyu Jiang, Cheng-Chun Hsu, Yuke Zhu CVPR 2022, Oral Project | arxiv News 2022

UT Robot Perception and Learning Lab 78 Dec 22, 2022
Koç University deep learning framework.

Knet Knet (pronounced "kay-net") is the Koç University deep learning framework implemented in Julia by Deniz Yuret and collaborators. It supports GPU

1.4k Dec 31, 2022
Randstad Artificial Intelligence Challenge (powered by VGEN). Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato

Randstad Artificial Intelligence Challenge (powered by VGEN) Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato Struttura director

Stefano Fiorucci 1 Nov 13, 2021