Code for Ditto: Building Digital Twins of Articulated Objects from Interaction

Overview

Ditto: Building Digital Twins of Articulated Objects from Interaction

Zhenyu Jiang, Cheng-Chun Hsu, Yuke Zhu

CVPR 2022, Oral

Project | arxiv

intro

News

2022-04-28: We released the data generation code of Ditto here.

Introduction

Ditto (Digital Twins of Articulated Objects) is a model that reconstructs part-level geometry and articulation model of an articulated object given observations before and after an interaction. Specifically, we use a PointNet++ encoder to encoder the input point cloud observations, and fuse the subsampled point features with a simple attention layer. Then we use two independent decoders to propagate the fused point features into two sets of dense point features, for geometry reconstruction and articulation estimation separately. We construct feature grid/planes by projecting and pooling the point features, and query local features from the constructed feature grid/planes. Conditioning on local features, we use different decoders to predict occupancy, segmentation and joint parameters with respect to the query points. At then end, we can extract explicit geometry and articulation model from the implicit decoders.

If you find our work useful in your research, please consider citing.

Installation

  1. Create a conda environment and install required packages.
conda env create -f conda_env_gpu.yaml -n Ditto

You can change the pytorch and cuda version in conda_env_gpu.yaml.

  1. Build ConvONets dependents by running python scripts/convonet_setup.py build_ext --inplace.

  2. Download the data, then unzip the data.zip under the repo's root.

Training

# single GPU
python run.py experiment=Ditto_s2m

# multiple GPUs
python run.py trainer.gpus=4 +trainer.accelerator='ddp' experiment=Ditto_s2m

# multiple GPUs + wandb logging
python run.py trainer.gpus=4 +trainer.accelerator='ddp' logger=wandb logger.wandb.group=s2m experiment=Ditto_s2m

Testing

# only support single GPU
python run_test.py experiment=Ditto_s2m trainer.resume_from_checkpoint=/path/to/trained/model/

Demo

Here is a minimum demo that starts from multiview depth maps before and after interaction and ends with a reconstructed digital twin. To run the demo, you need to install this library for visualization.

We provide the posed depth images of a real word laptop to run the demo. You can download from here and put it under data. You can also run demo your own data that follows the same format.

Data and pre-trained models

Data: here. Remeber to cite Shape2Motion and Abbatematteo et al. as well as Ditto when using these datasets.

Pre-trained models: Shape2Motion dataset, Synthetic dataset.

Useful tips

  1. Run eval "$(python run.py -sc install=bash)" under the root directory, you can have auto-completion for commandline options.

  2. Install pre-commit hooks by pip install pre-commit; pre-commit install, then you can have automatic formatting before each commit.

Related Repositories

  1. Our code is based on this fantastic template Lightning-Hydra-Template.

  2. We use ConvONets as our backbone.

Citing

@inproceedings{jiang2022ditto,
   title={Ditto: Building Digital Twins of Articulated Objects from Interaction},
   author={Jiang, Zhenyu and Hsu, Cheng-Chun and Zhu, Yuke},
   booktitle={arXiv preprint arXiv:2202.08227},
   year={2022}
}
Owner
UT Robot Perception and Learning Lab
UT Robot Perception and Learning Lab
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squares.

W.I.P-Aim-Memory-Game A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squar

dE_soot 1 Dec 08, 2021
An Implementation of Transformer in Transformer in TensorFlow for image classification, attention inside local patches

Transformer-in-Transformer An Implementation of the Transformer in Transformer paper by Han et al. for image classification, attention inside local pa

Rishit Dagli 40 Jul 25, 2022
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 05, 2022
Zeyuan Chen, Yangchao Wang, Yang Yang and Dong Liu.

Principled S2R Dehazing This repository contains the official implementation for PSD Framework introduced in the following paper: PSD: Principled Synt

zychen 78 Dec 30, 2022
In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard test set accuracy

PixMix Introduction In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard te

Andy Zou 79 Dec 30, 2022
GANsformer: Generative Adversarial Transformers Drew A

GANformer: Generative Adversarial Transformers Drew A. Hudson* & C. Lawrence Zitnick Update: We released the new GANformer2 paper! *I wish to thank Ch

Drew Arad Hudson 1.2k Jan 02, 2023
Cascaded Pyramid Network (CPN) based on Keras (Tensorflow backend)

ML2 Takehome Project Reimplementing the paper: Cascaded Pyramid Network for Multi-Person Pose Estimation Dataset The model uses the COCO dataset which

Vo Van Tu 1 Nov 22, 2021
Denoising Normalizing Flow

Denoising Normalizing Flow Christian Horvat and Jean-Pascal Pfister 2021 We combine Normalizing Flows (NFs) and Denoising Auto Encoder (DAE) by introd

CHrvt 17 Oct 15, 2022
Classification of ecg datas for disease detection

ecg_classification Classification of ecg datas for disease detection

Atacan ÖZKAN 5 Sep 09, 2022
This program can detect your face and add an Christams hat on the top of your head

Auto_Christmas This program can detect your face and add a Christmas hat to the top of your head. just run the Auto_Christmas.py, then you can see the

3 Dec 22, 2021
A fast model to compute optical flow between two input images.

DCVNet: Dilated Cost Volumes for Fast Optical Flow This repository contains our implementation of the paper: @InProceedings{jiang2021dcvnet, title={

Huaizu Jiang 8 Sep 27, 2021
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022
Official Pytorch implementation for AAAI2021 paper (RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning)

RSPNet Official Pytorch implementation for AAAI2021 paper "RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning" [Suppleme

35 Jun 24, 2022
Source code for CVPR2022 paper "Abandoning the Bayer-Filter to See in the Dark"

Abandoning the Bayer-Filter to See in the Dark (CVPR 2022) Paper: https://arxiv.org/abs/2203.04042 (Arxiv version) This code includes the training and

74 Dec 15, 2022
This code is 3d-CNN model that can predict environmental value

Predict-environmental-value-3dCNN This code is 3d-CNN model that can predict environmental value. Firstly, I built a model that can create a lot of bu

1 Jan 06, 2022
source code of “Visual Saliency Transformer” (ICCV2021)

Visual Saliency Transformer (VST) source code for our ICCV 2021 paper “Visual Saliency Transformer” by Nian Liu, Ni Zhang, Kaiyuan Wan, Junwei Han, an

89 Dec 21, 2022
Mouse Brain in the Model Zoo

Deep Neural Mouse Brain Modeling This is the repository for the ongoing deep neural mouse modeling project, an attempt to characterize the representat

Colin Conwell 15 Aug 22, 2022
PINN(s): Physics-Informed Neural Network(s) for von Karman vortex street

PINN(s): Physics-Informed Neural Network(s) for von Karman vortex street This is

ShotaDEGUCHI 2 Apr 18, 2022
Sequence lineage information extracted from RKI sequence data repo

Pango lineage information for German SARS-CoV-2 sequences This repository contains a join of the metadata and pango lineage tables of all German SARS-

Cornelius Roemer 24 Oct 26, 2022