Network Compression via Central Filter

Overview

Network Compression via Central Filter

Environments

The code has been tested in the following environments:

  • Python 3.8
  • PyTorch 1.8.1
  • cuda 10.2
  • torchsummary, torchvision, thop

Both windows and linux are available.

Pre-trained Models

CIFAR-10:

Vgg-16 | ResNet56 | DenseNet-40 | GoogLeNet

ImageNet:

ResNet50

Running Code

The experiment is divided into two steps. We have provided the calculated data and can skip the first step.

Similarity Matrix Generation

@echo off
@rem for windows
start cmd /c ^
"cd /D [code dir]  ^
& [python.exe dir]\python.exe rank.py ^
--arch [model arch name] ^
--resume [pre-trained model dir] ^
--num_workers [worker numbers] ^
--image_num [batch numbers] ^
--batch_size [batch size] ^
--dataset [CIFAR10 or ImageNet] ^
--data_dir [data dir] ^
--calc_dis_mtx True ^
& pause"
# for linux
python rank.py \
--arch [model arch name] \
--resume [pre-trained model dir] \
--num_workers [worker numbers] \
--image_num [batch numbers] \
--batch_size [batch size] \
--dataset [CIFAR10 or ImageNet] \
--data_dir [data dir] \
--calc_dis_mtx True

Model Training

The experimental results and related configurations covered in this paper are as follows.

1. VGGNet

Architecture Compress Rate Params Flops Accuracy
VGG-16(Baseline) 14.98M(0.0%) 313.73M(0.0%) 93.96%
VGG-16 [0.3]+[0.2]*4+[0.3]*2+[0.4]+[0.85]*4 2.45M(83.6%) 124.10M(60.4%) 93.67%
VGG-16 [0.3]*5+[0.5]*3+[0.8]*4 2.18M(85.4%) 91.54M(70.8%) 93.06%
VGG-16 [0.3]*2+[0.45]*3+[0.6]*3+[0.85]*4 1.51M(89.9%) 65.92M(79.0%) 92.49%
python main_win.py \
--arch vgg_16_bn \
--resume [pre-trained model dir] \
--compress_rate [0.3]*2+[0.45]*3+[0.6]*3+[0.85]*4 \
--num_workers [worker numbers] \
--epochs 30 \
--lr 0.001 \
--lr_decay_step 5 \
--save_id 1 \
--weight_decay 0.005 \
--data_dir [dataset dir] \
--dataset CIFAR10 

2. ResNet-56

Architecture Compress Rate Params Flops Accuracy
ResNet-56(Baseline) 0.85M(0.0%) 125.49M(0.0%) 93.26%
ResNet-56 [0.]+[0.2,0.]*9+[0.3,0.]*9+[0.4,0.]*9 0.53M(37.6%) 86.11M(31.4%) 93.64%
ResNet-56 [0.]+[0.3,0.]*9+[0.4,0.]*9+[0.5,0.]*9 0.45M(47.1%) 75.7M(39.7%) 93.59%
ResNet-56 [0.]+[0.2,0.]*2+[0.6,0.]*7+[0.7,0.]*9+[0.8,0.]*9 0.19M(77.6%) 40.0M(68.1%) 92.19%
python main_win.py \
--arch resnet_56 \
--resume [pre-trained model dir] \
--compress_rate [0.]+[0.2,0.]*2+[0.6,0.]*7+[0.7,0.]*9+[0.8,0.]*9 \
--num_workers [worker numbers] \
--epochs 30 \
--lr 0.001 \
--lr_decay_step 5 \
--save_id 1 \
--weight_decay 0.005 \
--data_dir [dataset dir] \
--dataset CIFAR10 

3.DenseNet-40

Architecture Compress Rate Params Flops Accuracy
DenseNet-40(Baseline) 1.04M(0.0%) 282.00M(0.0%) 94.81%
DenseNet-40 [0.]+[0.3]*12+[0.1]+[0.3]*12+[0.1]+[0.3]*8+[0.]*4 0.67M(35.6%) 165.38M(41.4%) 94.33%
DenseNet-40 [0.]+[0.5]*12+[0.3]+[0.4]*12+[0.3]+[0.4]*9+[0.]*3 0.46M(55.8%) 109.40M(61.3%) 93.71%
# for linux
python main_win.py \
--arch densenet_40 \
--resume [pre-trained model dir] \
--compress_rate [0.]+[0.5]*12+[0.3]+[0.4]*12+[0.3]+[0.4]*9+[0.]*3 \
--num_workers [worker numbers] \
--epochs 30 \
--lr 0.001 \
--lr_decay_step 5 \
--save_id 1 \
--weight_decay 0.005 \
--data_dir [dataset dir] \
--dataset CIFAR10 

4. GoogLeNet

Architecture Compress Rate Params Flops Accuracy
GoogLeNet(Baseline) 6.15M(0.0%) 1520M(0.0%) 95.05%
GoogLeNet [0.2]+[0.7]*15+[0.8]*9+[0.,0.4,0.] 2.73M(55.6%) 0.56B(63.2%) 94.70%
GoogLeNet [0.2]+[0.9]*24+[0.,0.4,0.] 2.17M(64.7%) 0.37B(75.7%) 94.13%
python main_win.py \
--arch googlenet \
--resume [pre-trained model dir] \
--compress_rate [0.2]+[0.9]*24+[0.,0.4,0.] \
--num_workers [worker numbers] \
--epochs 1 \
--lr 0.001 \
--save_id 1 \
--weight_decay 0. \
--data_dir [dataset dir] \
--dataset CIFAR10

python main_win.py \
--arch googlenet \
--from_scratch True \
--resume finally_pruned_model/googlenet_1.pt \
--num_workers 2 \
--epochs 30 \
--lr 0.01 \
--lr_decay_step 5,15 \
--save_id 1 \
--weight_decay 0.005 \
--data_dir [dataset dir] \
--dataset CIFAR10

4. ResNet-50

Architecture Compress Rate Params Flops Top-1 Accuracy Top-5 Accuracy
ResNet-50(baseline) 25.55M(0.0%) 4.11B(0.0%) 76.15% 92.87%
ResNet-50 [0.]+[0.1,0.1,0.2]*1+[0.5,0.5,0.2]*2+[0.1,0.1,0.2]*1+[0.5,0.5,0.2]*3+[0.1,0.1,0.2]*1+[0.5,0.5,0.2]*5+[0.1,0.1,0.1]+[0.2,0.2,0.1]*2 16.08M(36.9%) 2.13B(47.9%) 75.08% 92.30%
ResNet-50 [0.]+[0.1,0.1,0.4]*1+[0.7,0.7,0.4]*2+[0.2,0.2,0.4]*1+[0.7,0.7,0.4]*3+[0.2,0.2,0.3]*1+[0.7,0.7,0.3]*5+[0.1,0.1,0.1]+[0.2,0.3,0.1]*2 13.73M(46.2%) 1.50B(63.5%) 73.43% 91.57%
ResNet-50 [0.]+[0.2,0.2,0.65]*1+[0.75,0.75,0.65]*2+[0.15,0.15,0.65]*1+[0.75,0.75,0.65]*3+[0.15,0.15,0.65]*1+[0.75,0.75,0.65]*5+[0.15,0.15,0.35]+[0.5,0.5,0.35]*2 8.10M(68.2%) 0.98B(76.2%) 70.26% 89.82%
python main_win.py \
--arch resnet_50 \
--resume [pre-trained model dir] \
--data_dir [dataset dir] \
--dataset ImageNet \
--compress_rate [0.]+[0.1,0.1,0.4]*1+[0.7,0.7,0.4]*2+[0.2,0.2,0.4]*1+[0.7,0.7,0.4]*3+[0.2,0.2,0.3]*1+[0.7,0.7,0.3]*5+[0.1,0.1,0.1]+[0.2,0.3,0.1]*2 \
--num_workers [worker numbers] \
--batch_size 64 \
--epochs 2 \
--lr_decay_step 1 \
--lr 0.001 \
--save_id 1 \
--weight_decay 0. \
--input_size 224 \
--start_cov 0

python main_win.py \
--arch resnet_50 \
--from_scratch True \
--resume finally_pruned_model/resnet_50_1.pt \
--num_workers 8 \
--epochs 40 \
--lr 0.001 \
--lr_decay_step 5,20 \
--save_id 2 \
--batch_size 64 \
--weight_decay 0.0005 \
--input_size 224 \
--data_dir [dataset dir] \
--dataset ImageNet 
Automatic Image Background Subtraction

Automatic Image Background Subtraction This repo contains set of scripts for automatic one-shot image background subtraction task using the following

Oleg Sémery 6 Dec 05, 2022
Deep Learning for Computer Vision final project

Deep Learning for Computer Vision final project

grassking100 1 Nov 30, 2021
Open-Domain Question-Answering for COVID-19 and Other Emergent Domains

Open-Domain Question-Answering for COVID-19 and Other Emergent Domains This repository contains the source code for an end-to-end open-domain question

7 Sep 27, 2022
A collection of scripts I developed for personal and working projects.

A collection of scripts I developed for personal and working projects Table of contents Introduction Repository diagram structure List of scripts pyth

Gianluca Bianco 109 Dec 26, 2022
OpenMMLab Model Deployment Toolset

Introduction English | 简体中文 MMDeploy is an open-source deep learning model deployment toolset. It is a part of the OpenMMLab project. Major features F

OpenMMLab 1.5k Dec 30, 2022
Pytorch implementation of Supporting Clustering with Contrastive Learning, NAACL 2021

Supporting Clustering with Contrastive Learning SCCL (NAACL 2021) Dejiao Zhang, Feng Nan, Xiaokai Wei, Shangwen Li, Henghui Zhu, Kathleen McKeown, Ram

231 Jan 05, 2023
Single/multi view image(s) to voxel reconstruction using a recurrent neural network

3D-R2N2: 3D Recurrent Reconstruction Neural Network This repository contains the source codes for the paper Choy et al., 3D-R2N2: A Unified Approach f

Chris Choy 1.2k Dec 27, 2022
[ICCV-2021] An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation

An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation (ICCV 2021) Introduction This is an official pytorch implemen

rongchangxie 42 Jan 04, 2023
An University Project of Quera Web Crawling.

WebCrawlerProject An University Project of Quera Web Crawling. خزشگر اینستاگرام در این پروژه شما باید با استفاده از کتابخانه های زیر یک خزشگر اینستاگر

Mahdi 3 Aug 12, 2022
This project provides an unsupervised framework for mining and tagging quality phrases on text corpora with pretrained language models (KDD'21).

UCPhrase: Unsupervised Context-aware Quality Phrase Tagging To appear on KDD'21...[pdf] This project provides an unsupervised framework for mining and

Xiaotao Gu 146 Dec 22, 2022
Code for EMNLP 2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training"

SCAPT-ABSA Code for EMNLP2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training" Overvie

Zhengyan Li 66 Dec 04, 2022
You Only Look One-level Feature (YOLOF), CVPR2021, Detectron2

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides a neat implementation

qiang chen 273 Jan 03, 2023
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 09, 2023
Poplar implementation of "Bundle Adjustment on a Graph Processor" (CVPR 2020)

Poplar Implementation of Bundle Adjustment using Gaussian Belief Propagation on Graphcore's IPU Implementation of CVPR 2020 paper: Bundle Adjustment o

Joe Ortiz 34 Dec 05, 2022
Detecting and Tracking Small and Dense Moving Objects in Satellite Videos: A Benchmark

This dataset is a large-scale dataset for moving object detection and tracking in satellite videos, which consists of 40 satellite videos captured by Jilin-1 satellite platforms.

Qingyong 87 Dec 22, 2022
The implementation code for "DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction"

DAGAN This is the official implementation code for DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruct

TensorLayer Community 159 Nov 22, 2022
Learning Energy-Based Models by Diffusion Recovery Likelihood

Learning Energy-Based Models by Diffusion Recovery Likelihood Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, Diederik P. Kingma Paper: https://arxiv.o

Ruiqi Gao 41 Nov 22, 2022
Scalable Multi-Agent Reinforcement Learning

Scalable Multi-Agent Reinforcement Learning 1. Featured algorithms: Value Function Factorization with Variable Agent Sub-Teams (VAST) [1] 2. Implement

3 Aug 02, 2022
This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.

Self Driving Car An autonomous car (also known as a driverless car, self-driving car, and robotic car) is a vehicle that is capable of sensing its env

Sagor Saha 4 Sep 04, 2021
Implementations of orthogonal and semi-orthogonal convolutions in the Fourier domain with applications to adversarial robustness

Orthogonalizing Convolutional Layers with the Cayley Transform This repository contains implementations and source code to reproduce experiments for t

CMU Locus Lab 36 Dec 30, 2022