Network Compression via Central Filter

Overview

Network Compression via Central Filter

Environments

The code has been tested in the following environments:

  • Python 3.8
  • PyTorch 1.8.1
  • cuda 10.2
  • torchsummary, torchvision, thop

Both windows and linux are available.

Pre-trained Models

CIFAR-10:

Vgg-16 | ResNet56 | DenseNet-40 | GoogLeNet

ImageNet:

ResNet50

Running Code

The experiment is divided into two steps. We have provided the calculated data and can skip the first step.

Similarity Matrix Generation

@echo off
@rem for windows
start cmd /c ^
"cd /D [code dir]  ^
& [python.exe dir]\python.exe rank.py ^
--arch [model arch name] ^
--resume [pre-trained model dir] ^
--num_workers [worker numbers] ^
--image_num [batch numbers] ^
--batch_size [batch size] ^
--dataset [CIFAR10 or ImageNet] ^
--data_dir [data dir] ^
--calc_dis_mtx True ^
& pause"
# for linux
python rank.py \
--arch [model arch name] \
--resume [pre-trained model dir] \
--num_workers [worker numbers] \
--image_num [batch numbers] \
--batch_size [batch size] \
--dataset [CIFAR10 or ImageNet] \
--data_dir [data dir] \
--calc_dis_mtx True

Model Training

The experimental results and related configurations covered in this paper are as follows.

1. VGGNet

Architecture Compress Rate Params Flops Accuracy
VGG-16(Baseline) 14.98M(0.0%) 313.73M(0.0%) 93.96%
VGG-16 [0.3]+[0.2]*4+[0.3]*2+[0.4]+[0.85]*4 2.45M(83.6%) 124.10M(60.4%) 93.67%
VGG-16 [0.3]*5+[0.5]*3+[0.8]*4 2.18M(85.4%) 91.54M(70.8%) 93.06%
VGG-16 [0.3]*2+[0.45]*3+[0.6]*3+[0.85]*4 1.51M(89.9%) 65.92M(79.0%) 92.49%
python main_win.py \
--arch vgg_16_bn \
--resume [pre-trained model dir] \
--compress_rate [0.3]*2+[0.45]*3+[0.6]*3+[0.85]*4 \
--num_workers [worker numbers] \
--epochs 30 \
--lr 0.001 \
--lr_decay_step 5 \
--save_id 1 \
--weight_decay 0.005 \
--data_dir [dataset dir] \
--dataset CIFAR10 

2. ResNet-56

Architecture Compress Rate Params Flops Accuracy
ResNet-56(Baseline) 0.85M(0.0%) 125.49M(0.0%) 93.26%
ResNet-56 [0.]+[0.2,0.]*9+[0.3,0.]*9+[0.4,0.]*9 0.53M(37.6%) 86.11M(31.4%) 93.64%
ResNet-56 [0.]+[0.3,0.]*9+[0.4,0.]*9+[0.5,0.]*9 0.45M(47.1%) 75.7M(39.7%) 93.59%
ResNet-56 [0.]+[0.2,0.]*2+[0.6,0.]*7+[0.7,0.]*9+[0.8,0.]*9 0.19M(77.6%) 40.0M(68.1%) 92.19%
python main_win.py \
--arch resnet_56 \
--resume [pre-trained model dir] \
--compress_rate [0.]+[0.2,0.]*2+[0.6,0.]*7+[0.7,0.]*9+[0.8,0.]*9 \
--num_workers [worker numbers] \
--epochs 30 \
--lr 0.001 \
--lr_decay_step 5 \
--save_id 1 \
--weight_decay 0.005 \
--data_dir [dataset dir] \
--dataset CIFAR10 

3.DenseNet-40

Architecture Compress Rate Params Flops Accuracy
DenseNet-40(Baseline) 1.04M(0.0%) 282.00M(0.0%) 94.81%
DenseNet-40 [0.]+[0.3]*12+[0.1]+[0.3]*12+[0.1]+[0.3]*8+[0.]*4 0.67M(35.6%) 165.38M(41.4%) 94.33%
DenseNet-40 [0.]+[0.5]*12+[0.3]+[0.4]*12+[0.3]+[0.4]*9+[0.]*3 0.46M(55.8%) 109.40M(61.3%) 93.71%
# for linux
python main_win.py \
--arch densenet_40 \
--resume [pre-trained model dir] \
--compress_rate [0.]+[0.5]*12+[0.3]+[0.4]*12+[0.3]+[0.4]*9+[0.]*3 \
--num_workers [worker numbers] \
--epochs 30 \
--lr 0.001 \
--lr_decay_step 5 \
--save_id 1 \
--weight_decay 0.005 \
--data_dir [dataset dir] \
--dataset CIFAR10 

4. GoogLeNet

Architecture Compress Rate Params Flops Accuracy
GoogLeNet(Baseline) 6.15M(0.0%) 1520M(0.0%) 95.05%
GoogLeNet [0.2]+[0.7]*15+[0.8]*9+[0.,0.4,0.] 2.73M(55.6%) 0.56B(63.2%) 94.70%
GoogLeNet [0.2]+[0.9]*24+[0.,0.4,0.] 2.17M(64.7%) 0.37B(75.7%) 94.13%
python main_win.py \
--arch googlenet \
--resume [pre-trained model dir] \
--compress_rate [0.2]+[0.9]*24+[0.,0.4,0.] \
--num_workers [worker numbers] \
--epochs 1 \
--lr 0.001 \
--save_id 1 \
--weight_decay 0. \
--data_dir [dataset dir] \
--dataset CIFAR10

python main_win.py \
--arch googlenet \
--from_scratch True \
--resume finally_pruned_model/googlenet_1.pt \
--num_workers 2 \
--epochs 30 \
--lr 0.01 \
--lr_decay_step 5,15 \
--save_id 1 \
--weight_decay 0.005 \
--data_dir [dataset dir] \
--dataset CIFAR10

4. ResNet-50

Architecture Compress Rate Params Flops Top-1 Accuracy Top-5 Accuracy
ResNet-50(baseline) 25.55M(0.0%) 4.11B(0.0%) 76.15% 92.87%
ResNet-50 [0.]+[0.1,0.1,0.2]*1+[0.5,0.5,0.2]*2+[0.1,0.1,0.2]*1+[0.5,0.5,0.2]*3+[0.1,0.1,0.2]*1+[0.5,0.5,0.2]*5+[0.1,0.1,0.1]+[0.2,0.2,0.1]*2 16.08M(36.9%) 2.13B(47.9%) 75.08% 92.30%
ResNet-50 [0.]+[0.1,0.1,0.4]*1+[0.7,0.7,0.4]*2+[0.2,0.2,0.4]*1+[0.7,0.7,0.4]*3+[0.2,0.2,0.3]*1+[0.7,0.7,0.3]*5+[0.1,0.1,0.1]+[0.2,0.3,0.1]*2 13.73M(46.2%) 1.50B(63.5%) 73.43% 91.57%
ResNet-50 [0.]+[0.2,0.2,0.65]*1+[0.75,0.75,0.65]*2+[0.15,0.15,0.65]*1+[0.75,0.75,0.65]*3+[0.15,0.15,0.65]*1+[0.75,0.75,0.65]*5+[0.15,0.15,0.35]+[0.5,0.5,0.35]*2 8.10M(68.2%) 0.98B(76.2%) 70.26% 89.82%
python main_win.py \
--arch resnet_50 \
--resume [pre-trained model dir] \
--data_dir [dataset dir] \
--dataset ImageNet \
--compress_rate [0.]+[0.1,0.1,0.4]*1+[0.7,0.7,0.4]*2+[0.2,0.2,0.4]*1+[0.7,0.7,0.4]*3+[0.2,0.2,0.3]*1+[0.7,0.7,0.3]*5+[0.1,0.1,0.1]+[0.2,0.3,0.1]*2 \
--num_workers [worker numbers] \
--batch_size 64 \
--epochs 2 \
--lr_decay_step 1 \
--lr 0.001 \
--save_id 1 \
--weight_decay 0. \
--input_size 224 \
--start_cov 0

python main_win.py \
--arch resnet_50 \
--from_scratch True \
--resume finally_pruned_model/resnet_50_1.pt \
--num_workers 8 \
--epochs 40 \
--lr 0.001 \
--lr_decay_step 5,20 \
--save_id 2 \
--batch_size 64 \
--weight_decay 0.0005 \
--input_size 224 \
--data_dir [dataset dir] \
--dataset ImageNet 
GyroSPD: Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices

GyroSPD Code for the paper "Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices" accepted at NeurIPS 2021. Re

Federico Lopez 12 Dec 12, 2022
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Fisher Induced Sparse uncHanging (FISH) Mask This repo contains the code for Fisher Induced Sparse uncHanging (FISH) Mask training, from "Training Neu

Varun Nair 37 Dec 30, 2022
Implementation of BI-RADS-BERT & The Advantages of Section Tokenization.

BI-RADS BERT Implementation of BI-RADS-BERT & The Advantages of Section Tokenization. This implementation could be used on other radiology in house co

1 May 17, 2022
Whisper is a file-based time-series database format for Graphite.

Whisper Overview Whisper is one of three components within the Graphite project: Graphite-Web, a Django-based web application that renders graphs and

Graphite Project 1.2k Dec 25, 2022
Oriented Response Networks, in CVPR 2017

Oriented Response Networks [Home] [Project] [Paper] [Supp] [Poster] Torch Implementation The torch branch contains: the official torch implementation

ZhouYanzhao 217 Dec 12, 2022
Reproduce results and replicate training fo T0 (Multitask Prompted Training Enables Zero-Shot Task Generalization)

T-Zero This repository serves primarily as codebase and instructions for training, evaluation and inference of T0. T0 is the model developed in Multit

BigScience Workshop 253 Dec 27, 2022
Cross-platform CLI tool to generate your Github profile's stats and summary.

ghs Cross-platform CLI tool to generate your Github profile's stats and summary. Preview Hop on to examples for other usecases. Jump to: Installation

HackerRank 134 Dec 20, 2022
Monitora la qualità della ricezione dei segnali radio nelle province siciliane.

FMap-server Monitora la qualità della ricezione dei segnali radio nelle province siciliane. Conversion data Frequency - StationName maps are stored in

Triglie 5 May 24, 2021
TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels.

AutoDSP TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels. About Adaptive filtering algorithms are commonplace in sign

Jonah Casebeer 48 Sep 19, 2022
SPTAG: A library for fast approximate nearest neighbor search

SPTAG: A library for fast approximate nearest neighbor search SPTAG SPTAG (Space Partition Tree And Graph) is a library for large scale vector approxi

Microsoft 4.3k Jan 01, 2023
City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces

City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces Paper Temporary GitHub page for City Surfaces paper. More soon! While designing s

14 Nov 10, 2022
MapReader: A computer vision pipeline for the semantic exploration of maps at scale

MapReader A computer vision pipeline for the semantic exploration of maps at scale MapReader is an end-to-end computer vision (CV) pipeline designed b

Living with Machines 25 Dec 26, 2022
The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

Yuki M. Asano 249 Dec 22, 2022
SGoLAM - Simultaneous Goal Localization and Mapping

SGoLAM - Simultaneous Goal Localization and Mapping PyTorch implementation of the MultiON runner-up entry, SGoLAM: Simultaneous Goal Localization and

10 Jan 05, 2023
An SE(3)-invariant autoencoder for generating the periodic structure of materials

Crystal Diffusion Variational AutoEncoder This software implementes Crystal Diffusion Variational AutoEncoder (CDVAE), which generates the periodic st

Tian Xie 94 Dec 10, 2022
Pomodoro timer that acknowledges the inexorable, infinite passage of time

Pomodouroboros Most pomodoro trackers assume you're going to start them. But time and tide wait for no one - the great pomodoro of the cosmos is cold

Glyph 66 Dec 13, 2022
[ICLR2021oral] Rethinking Architecture Selection in Differentiable NAS

DARTS-PT Code accompanying the paper ICLR'2021: Rethinking Architecture Selection in Differentiable NAS Ruochen Wang, Minhao Cheng, Xiangning Chen, Xi

Ruochen Wang 86 Dec 27, 2022
The world's simplest facial recognition api for Python and the command line

Face Recognition You can also read a translated version of this file in Chinese 简体中文版 or in Korean 한국어 or in Japanese 日本語. Recognize and manipulate fa

Adam Geitgey 46.9k Jan 03, 2023
Gems & Holiday Package Prediction

Predictive_Modelling Gems & Holiday Package Prediction This project is based on 2 cases studies : Gems Price Prediction and Holiday Package prediction

Avnika Mehta 1 Jan 27, 2022
The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information".

The HIST framework for stock trend forecasting The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining C

Wentao Xu 110 Dec 27, 2022