Network Compression via Central Filter

Overview

Network Compression via Central Filter

Environments

The code has been tested in the following environments:

  • Python 3.8
  • PyTorch 1.8.1
  • cuda 10.2
  • torchsummary, torchvision, thop

Both windows and linux are available.

Pre-trained Models

CIFAR-10:

Vgg-16 | ResNet56 | DenseNet-40 | GoogLeNet

ImageNet:

ResNet50

Running Code

The experiment is divided into two steps. We have provided the calculated data and can skip the first step.

Similarity Matrix Generation

@echo off
@rem for windows
start cmd /c ^
"cd /D [code dir]  ^
& [python.exe dir]\python.exe rank.py ^
--arch [model arch name] ^
--resume [pre-trained model dir] ^
--num_workers [worker numbers] ^
--image_num [batch numbers] ^
--batch_size [batch size] ^
--dataset [CIFAR10 or ImageNet] ^
--data_dir [data dir] ^
--calc_dis_mtx True ^
& pause"
# for linux
python rank.py \
--arch [model arch name] \
--resume [pre-trained model dir] \
--num_workers [worker numbers] \
--image_num [batch numbers] \
--batch_size [batch size] \
--dataset [CIFAR10 or ImageNet] \
--data_dir [data dir] \
--calc_dis_mtx True

Model Training

The experimental results and related configurations covered in this paper are as follows.

1. VGGNet

Architecture Compress Rate Params Flops Accuracy
VGG-16(Baseline) 14.98M(0.0%) 313.73M(0.0%) 93.96%
VGG-16 [0.3]+[0.2]*4+[0.3]*2+[0.4]+[0.85]*4 2.45M(83.6%) 124.10M(60.4%) 93.67%
VGG-16 [0.3]*5+[0.5]*3+[0.8]*4 2.18M(85.4%) 91.54M(70.8%) 93.06%
VGG-16 [0.3]*2+[0.45]*3+[0.6]*3+[0.85]*4 1.51M(89.9%) 65.92M(79.0%) 92.49%
python main_win.py \
--arch vgg_16_bn \
--resume [pre-trained model dir] \
--compress_rate [0.3]*2+[0.45]*3+[0.6]*3+[0.85]*4 \
--num_workers [worker numbers] \
--epochs 30 \
--lr 0.001 \
--lr_decay_step 5 \
--save_id 1 \
--weight_decay 0.005 \
--data_dir [dataset dir] \
--dataset CIFAR10 

2. ResNet-56

Architecture Compress Rate Params Flops Accuracy
ResNet-56(Baseline) 0.85M(0.0%) 125.49M(0.0%) 93.26%
ResNet-56 [0.]+[0.2,0.]*9+[0.3,0.]*9+[0.4,0.]*9 0.53M(37.6%) 86.11M(31.4%) 93.64%
ResNet-56 [0.]+[0.3,0.]*9+[0.4,0.]*9+[0.5,0.]*9 0.45M(47.1%) 75.7M(39.7%) 93.59%
ResNet-56 [0.]+[0.2,0.]*2+[0.6,0.]*7+[0.7,0.]*9+[0.8,0.]*9 0.19M(77.6%) 40.0M(68.1%) 92.19%
python main_win.py \
--arch resnet_56 \
--resume [pre-trained model dir] \
--compress_rate [0.]+[0.2,0.]*2+[0.6,0.]*7+[0.7,0.]*9+[0.8,0.]*9 \
--num_workers [worker numbers] \
--epochs 30 \
--lr 0.001 \
--lr_decay_step 5 \
--save_id 1 \
--weight_decay 0.005 \
--data_dir [dataset dir] \
--dataset CIFAR10 

3.DenseNet-40

Architecture Compress Rate Params Flops Accuracy
DenseNet-40(Baseline) 1.04M(0.0%) 282.00M(0.0%) 94.81%
DenseNet-40 [0.]+[0.3]*12+[0.1]+[0.3]*12+[0.1]+[0.3]*8+[0.]*4 0.67M(35.6%) 165.38M(41.4%) 94.33%
DenseNet-40 [0.]+[0.5]*12+[0.3]+[0.4]*12+[0.3]+[0.4]*9+[0.]*3 0.46M(55.8%) 109.40M(61.3%) 93.71%
# for linux
python main_win.py \
--arch densenet_40 \
--resume [pre-trained model dir] \
--compress_rate [0.]+[0.5]*12+[0.3]+[0.4]*12+[0.3]+[0.4]*9+[0.]*3 \
--num_workers [worker numbers] \
--epochs 30 \
--lr 0.001 \
--lr_decay_step 5 \
--save_id 1 \
--weight_decay 0.005 \
--data_dir [dataset dir] \
--dataset CIFAR10 

4. GoogLeNet

Architecture Compress Rate Params Flops Accuracy
GoogLeNet(Baseline) 6.15M(0.0%) 1520M(0.0%) 95.05%
GoogLeNet [0.2]+[0.7]*15+[0.8]*9+[0.,0.4,0.] 2.73M(55.6%) 0.56B(63.2%) 94.70%
GoogLeNet [0.2]+[0.9]*24+[0.,0.4,0.] 2.17M(64.7%) 0.37B(75.7%) 94.13%
python main_win.py \
--arch googlenet \
--resume [pre-trained model dir] \
--compress_rate [0.2]+[0.9]*24+[0.,0.4,0.] \
--num_workers [worker numbers] \
--epochs 1 \
--lr 0.001 \
--save_id 1 \
--weight_decay 0. \
--data_dir [dataset dir] \
--dataset CIFAR10

python main_win.py \
--arch googlenet \
--from_scratch True \
--resume finally_pruned_model/googlenet_1.pt \
--num_workers 2 \
--epochs 30 \
--lr 0.01 \
--lr_decay_step 5,15 \
--save_id 1 \
--weight_decay 0.005 \
--data_dir [dataset dir] \
--dataset CIFAR10

4. ResNet-50

Architecture Compress Rate Params Flops Top-1 Accuracy Top-5 Accuracy
ResNet-50(baseline) 25.55M(0.0%) 4.11B(0.0%) 76.15% 92.87%
ResNet-50 [0.]+[0.1,0.1,0.2]*1+[0.5,0.5,0.2]*2+[0.1,0.1,0.2]*1+[0.5,0.5,0.2]*3+[0.1,0.1,0.2]*1+[0.5,0.5,0.2]*5+[0.1,0.1,0.1]+[0.2,0.2,0.1]*2 16.08M(36.9%) 2.13B(47.9%) 75.08% 92.30%
ResNet-50 [0.]+[0.1,0.1,0.4]*1+[0.7,0.7,0.4]*2+[0.2,0.2,0.4]*1+[0.7,0.7,0.4]*3+[0.2,0.2,0.3]*1+[0.7,0.7,0.3]*5+[0.1,0.1,0.1]+[0.2,0.3,0.1]*2 13.73M(46.2%) 1.50B(63.5%) 73.43% 91.57%
ResNet-50 [0.]+[0.2,0.2,0.65]*1+[0.75,0.75,0.65]*2+[0.15,0.15,0.65]*1+[0.75,0.75,0.65]*3+[0.15,0.15,0.65]*1+[0.75,0.75,0.65]*5+[0.15,0.15,0.35]+[0.5,0.5,0.35]*2 8.10M(68.2%) 0.98B(76.2%) 70.26% 89.82%
python main_win.py \
--arch resnet_50 \
--resume [pre-trained model dir] \
--data_dir [dataset dir] \
--dataset ImageNet \
--compress_rate [0.]+[0.1,0.1,0.4]*1+[0.7,0.7,0.4]*2+[0.2,0.2,0.4]*1+[0.7,0.7,0.4]*3+[0.2,0.2,0.3]*1+[0.7,0.7,0.3]*5+[0.1,0.1,0.1]+[0.2,0.3,0.1]*2 \
--num_workers [worker numbers] \
--batch_size 64 \
--epochs 2 \
--lr_decay_step 1 \
--lr 0.001 \
--save_id 1 \
--weight_decay 0. \
--input_size 224 \
--start_cov 0

python main_win.py \
--arch resnet_50 \
--from_scratch True \
--resume finally_pruned_model/resnet_50_1.pt \
--num_workers 8 \
--epochs 40 \
--lr 0.001 \
--lr_decay_step 5,20 \
--save_id 2 \
--batch_size 64 \
--weight_decay 0.0005 \
--input_size 224 \
--data_dir [dataset dir] \
--dataset ImageNet 
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 322 Dec 31, 2022
CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

Bubbliiiing 267 Dec 29, 2022
Directed Greybox Fuzzing with AFL

AFLGo: Directed Greybox Fuzzing AFLGo is an extension of American Fuzzy Lop (AFL). Given a set of target locations (e.g., folder/file.c:582), AFLGo ge

380 Nov 24, 2022
A curated list of neural network pruning resources.

A curated list of neural network pruning and related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awesome-deep-learning-papers and Awesome-NAS.

Yang He 1.7k Jan 09, 2023
Multi-task head pose estimation in-the-wild

Multi-task head pose estimation in-the-wild We provide C++ code in order to replicate the head-pose experiments in our paper https://ieeexplore.ieee.o

Roberto Valle 26 Oct 06, 2022
CLIPImageClassifier wraps clip image model from transformers

CLIPImageClassifier CLIPImageClassifier wraps clip image model from transformers. CLIPImageClassifier is initialized with the argument classes, these

Jina AI 6 Sep 12, 2022
InsCLR: Improving Instance Retrieval with Self-Supervision

InsCLR: Improving Instance Retrieval with Self-Supervision This is an official PyTorch implementation of the InsCLR paper. Download Dataset Dataset Im

Zelu Deng 25 Aug 30, 2022
The Illinois repository for Climatehack (https://climatehack.ai/). We won 1st place!

Climatehack This is the repository for Illinois's Climatehack Team. We earned first place on the leaderboard with a final score of 0.87992. An overvie

Jatin Mathur 20 Jun 09, 2022
Real-time Joint Semantic Reasoning for Autonomous Driving

MultiNet MultiNet is able to jointly perform road segmentation, car detection and street classification. The model achieves real-time speed and state-

Marvin Teichmann 518 Dec 12, 2022
SelfAugment extends MoCo to include automatic unsupervised augmentation selection.

SelfAugment extends MoCo to include automatic unsupervised augmentation selection. In addition, we've included the ability to pretrain on several new datasets and included a wandb integration.

Colorado Reed 24 Oct 26, 2022
Multi-Stage Episodic Control for Strategic Exploration in Text Games

XTX: eXploit - Then - eXplore Requirements First clone this repo using git clone https://github.com/princeton-nlp/XTX.git Please create two conda envi

Princeton Natural Language Processing 9 May 24, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

Göktuğ Karakaşlı 16 Dec 05, 2022
Code for LIGA-Stereo Detector, ICCV'21

LIGA-Stereo Introduction This is the official implementation of the paper LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based

Xiaoyang Guo 75 Dec 09, 2022
Crowd-Kit is a powerful Python library that implements commonly-used aggregation methods for crowdsourced annotation and offers the relevant metrics and datasets

Crowd-Kit: Computational Quality Control for Crowdsourcing Documentation Crowd-Kit is a powerful Python library that implements commonly-used aggregat

Toloka 125 Dec 30, 2022
The source codes for ACL 2021 paper 'BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data'

BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data This repository provides the implementation details for

124 Dec 27, 2022
Face2webtoon - Despite its importance, there are few previous works applying I2I translation to webtoon.

Despite its importance, there are few previous works applying I2I translation to webtoon. I collected dataset from naver webtoon 연애혁명 and tried to transfer human faces to webtoon domain.

이상윤 64 Oct 19, 2022
Survival analysis in Python

What is survival analysis and why should I learn it? Survival analysis was originally developed and applied heavily by the actuarial and medical commu

Cameron Davidson-Pilon 2k Jan 08, 2023
WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction"

BiRTE WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction" Requirements The main requirements are: py

9 Dec 27, 2022
Toontown House CT Edition

Toontown House: Classic Toontown House Classic source that should just work. ❓ W

Open Source Toontown Servers 5 Jan 09, 2022