[ICML 2021] “ Self-Damaging Contrastive Learning”, Ziyu Jiang, Tianlong Chen, Bobak Mortazavi, Zhangyang Wang

Related tags

Deep LearningSDCLR
Overview

Self-Damaging Contrastive Learning

Introduction

The recent breakthrough achieved by contrastive learning accelerates the pace for deploying unsupervised training on real-world data applications. However, unlabeled data in reality is commonly imbalanced and shows a long-tail distribution, and it is unclear how robustly the latest contrastive learning methods could perform in the practical scenario. This paper proposes to explicitly tackle this challenge, via a principled framework called Self-Damaging Contrastive Learning (SDCLR), to automatically balance the representation learning without knowing the classes. Our main inspiration is drawn from the recent finding that deep models have difficult-to-memorize samples, and those may be exposed through network pruning [1]. It is further natural to hypothesize that long-tail samples are also tougher for the model to learn well due to insufficient examples. Hence, the key innovation in SDCLR is to create a dynamic self-competitor model to contrast with the target model, which is a pruned version of the latter. During training, contrasting the two models will lead to adaptive online mining of the most easily forgotten samples for the current target model, and implicitly emphasize them more in the contrastive loss. Extensive experiments across multiple datasets and imbalance settings show that SDCLR significantly improves not only overall accuracies but also balancedness, in terms of linear evaluation on the full-shot and few-shot settings.

[1] Hooker, Sara, et al. "What Do Compressed Deep Neural Networks Forget?." arXiv preprint arXiv:1911.05248 (2019).

Method

pipeline The overview of the proposed SDCLR framework. Built on top of simCLR pipeline by default, the uniqueness of SDCLR lies in its two different network branches: one is the target model to be trained, and the other "self-competitor" model that is pruned from the former online. The two branches share weights for their non-pruned parameters. Either branch has its independent batch normalization layers. Since the self-competitor is always obtained and updated from the latest target model, the two branches will co-evolve during training. Their contrasting will implicitly give more weights on long-tail samples.

Environment

Requirements:

pytorch 1.7.1 
opencv-python
scikit-learn 
matplotlib

Recommend installation cmds (linux)

conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.2 -c pytorch # change cuda version according to hardware
pip install opencv-python
conda install -c conda-forge scikit-learn matplotlib

Details about and Imagenet-100-LT Imagenet-LT-exp

Imagenet-100-LT sampling list

Imagenet-LT-exp sampling list

Pretrained models downloading

CIFAR10: pretraining, fine-tuning

CIFAR100: pretraining, fine-tuning

Imagenet100/Imagenet: pretraining, fine-tuning

Train and evaluate pretrained models

Before all

chmod +x  cmds/shell_scrips/*

CIFAR10

SimCLR on balanced training datasets

# pre-train and finetune
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-10-LT.sh -g 1 -w 8 --split split${split_num}_D_b
done

# evaluate pretrained model (after download and unzip the pretrained model)
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-10-LT.sh -g 1 -w 8 --split split${split_num}_D_b  --only_finetuning True  --test_only True
done

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset cifar10
# few shot
python exp_analyse.py --dataset cifar10 --fewShot

SimCLR on long tail training datasets

# pre-train and finetune
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-10-LT.sh -g 1 -w 8 --split split${split_num}_D_i
done

# evaluate pretrained model (after download and unzip the pretrained model)
for split_num in 1 2 3 4 5 
do
./cmds/shell_scrips/cifar-10-LT.sh -g 1 -w 8 --split split${split_num}_D_i --only_finetuning True --test_only True
done

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset cifar10 --LT
# few shot
python exp_analyse.py --dataset cifar10 --LT --fewShot

SDCLR on long tail training datasets

# pre-train and finetune
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-10-LT.sh -g 1 -w 8 --split split${split_num}_D_i --prune True --prune_percent 0.9 --prune_dual_bn True
done

# evaluate pretrained model (after download and unzip the pretrained model)
for split_num in 1 2 3 4 5 
do
./cmds/shell_scrips/cifar-10-LT.sh -g 1 -w 8 --split split${split_num}_D_i --prune True --prune_percent 0.9 --prune_dual_bn True --only_finetuning True --test_only True
done

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset cifar10 --LT --prune
# few shot
python exp_analyse.py --dataset cifar10 --LT --prune --fewShot

CIFAR100

SimCLR on balanced training datasets

# pre-train and finetune
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-100-LT.sh -g 1 -p 4867 -w 8 --split cifar100_split${split_num}_D_b
done

# evaluate pretrained model (after download and unzip the pretrained model)
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-100-LT.sh -g 1 -p 4867 -w 8 --split cifar100_split${split_num}_D_b --only_finetuning True --test_only True
done

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset cifar100
# few shot
python exp_analyse.py --dataset cifar100 --fewShot

SimCLR on long tail training datasets

# pre-train and finetune
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-100-LT.sh -g 1 -p 4867 -w 8 --split cifar100_split${split_num}_D_i
done

# evaluate pretrained model (after download and unzip the pretrained model)
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-100-LT.sh -g 1 -p 4867 -w 8 --split cifar100_split${split_num}_D_i --only_finetuning True --test_only True
done

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset cifar100 --LT
# few shot
python exp_analyse.py --dataset cifar100 --LT --fewShot

SDCLR on long tail training datasets

# pre-train and finetune
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-100-LT.sh -g 1 -p 4867 -w 8 --split cifar100_split${split_num}_D_i --prune True --prune_percent 0.9 --prune_dual_bn True
done

# evaluate pretrained model (after download and unzip the pretrained model)
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-100-LT.sh -g 1 -p 4867 -w 8 --split cifar100_split${split_num}_D_i --prune True --prune_percent 0.9 --prune_dual_bn True --only_finetuning True --test_only True
done

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset cifar100 --LT --prune
# few shot
python exp_analyse.py --dataset cifar100 --LT --prune --fewShot

Imagenet-100-LT

SimCLR on balanced training datasets

# pre-train and finetune
./cmds/shell_scrips/imagenet-100-res50-LT.sh --data \path\to\imagenet -g 2 -p 4867 -w 10 --split imageNet_100_BL_train

# evaluate pretrained model (after download and unzip the pretrained model)
./cmds/shell_scrips/imagenet-100-res50-LT.sh --data \path\to\imagenet -g 2 -p 4867 -w 10 --split imageNet_100_BL_train --only_finetuning True --test_only True

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset imagenet100
# few shot
python exp_analyse.py --dataset imagenet100 --fewShot

SimCLR on long tail training datasets

# pre-train and finetune
./cmds/shell_scrips/imagenet-100-res50-LT.sh --data \path\to\imagenet -g 2 -p 4867 -w 10 --split imageNet_100_LT_train

# evaluate pretrained model (after download and unzip the pretrained model)
./cmds/shell_scrips/imagenet-100-res50-LT.sh --data \path\to\imagenet -g 2 -p 4860 -w 10 --split imageNet_100_LT_train --only_finetuning True --test_only True

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset imagenet100 --LT
# few shot
python exp_analyse.py --dataset imagenet100 --LT --fewShot

SDCLR on long tail training datasets

# pre-train and finetune
./cmds/shell_scrips/imagenet-100-res50-LT.sh --data \path\to\imagenet -g 2 -p 4867 -w 10 --split imageNet_100_LT_train --prune True --prune_percent 0.3 --prune_dual_bn True --temp 0.3

# evaluate pretrained model (after download and unzip the pretrained model)
./cmds/shell_scrips/imagenet-100-res50-LT.sh --data \path\to\imagenet -g 2 -p 4860 -w 10 --split imageNet_100_LT_train --prune True --prune_percent 0.3 --prune_dual_bn True --temp 0.3 --only_finetuning True --test_only True

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset imagenet100 --LT --prune
# few shot
python exp_analyse.py --dataset imagenet100 --LT --prune --fewShot

Imagenet-Exp-LT

SimCLR on balanced training datasets

# pre-train and finetune
./cmds/shell_scrips/imagenet-res50-LT.sh --data \path\to\imagenet -g 2 -p 4867 -w 10 --split imageNet_BL_exp_train

# evaluate pretrained model (after download and unzip the pretrained model)
./cmds/shell_scrips/imagenet-res50-LT.sh --data \path\to\imagenet -g 2 -p 4867 -w 10 --split imageNet_BL_exp_train --only_finetuning True --test_only True

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset imagenet
# few shot
python exp_analyse.py --dataset imagenet --fewShot

SimCLR on long tail training datasets

# pre-train and finetune
./cmds/shell_scrips/imagenet-res50-LT.sh --data \path\to\imagenet -g 2 -p 4867 -w 10 --split imageNet_LT_exp_train

# evaluate pretrained model (after download and unzip the pretrained model)
./cmds/shell_scrips/imagenet-res50-LT.sh --data \path\to\imagenet -g 2 -p 4868 -w 10 --split imageNet_LT_exp_train --only_finetuning True --test_only True

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset imagenet --LT
# few shot
python exp_analyse.py --dataset imagenet --LT --fewShot

Citation

@inproceedings{
jiang2021self,
title={Self-Damaging Contrastive Learning},
author={Jiang, Ziyu and Chen, Tianlong and Mortazavi, Bobak and Wang, Zhangyang},
booktitle={International Conference on Machine Learning},
year={2021}
}
Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
Image Matching Evaluation

Image Matching Evaluation (IME) IME provides to test any feature matching algorithm on datasets containing ground-truth homographies. Also, one can re

32 Nov 17, 2022
MegEngine implementation of YOLOX

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

旷视天元 MegEngine 77 Nov 22, 2022
MODNet: Trimap-Free Portrait Matting in Real Time

MODNet is a model for real-time portrait matting with only RGB image input.

Zhanghan Ke 2.8k Dec 30, 2022
PyTorch 1.0 inference in C++ on Windows10 platforms

Serving PyTorch Models in C++ on Windows10 platforms How to use Prepare Data examples/data/train/ - 0 - 1 . . . - n examples/data/test/

Henson 88 Oct 15, 2022
A modular domain adaptation library written in PyTorch.

A modular domain adaptation library written in PyTorch.

Kevin Musgrave 225 Dec 29, 2022
CUAD

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022
[NeurIPS 2021] PyTorch Code for Accelerating Robotic Reinforcement Learning with Parameterized Action Primitives

Robot Action Primitives (RAPS) This repository is the official implementation of Accelerating Robotic Reinforcement Learning via Parameterized Action

Murtaza Dalal 55 Dec 27, 2022
Neural Caption Generator with Attention

Neural Caption Generator with Attention Tensorflow implementation of "Show

Taeksoo Kim 510 Nov 30, 2022
pytorch implementation of dftd2 & dftd3

torch-dftd pytorch implementation of dftd2 [1] & dftd3 [2, 3] Install # Install from pypi pip install torch-dftd # Install from source (for developer

33 Nov 28, 2022
PyTorch implementation of DeepLab v2 on COCO-Stuff / PASCAL VOC

DeepLab with PyTorch This is an unofficial PyTorch implementation of DeepLab v2 [1] with a ResNet-101 backbone. COCO-Stuff dataset [2] and PASCAL VOC

Kazuto Nakashima 995 Jan 08, 2023
A Kitti Road Segmentation model implemented in tensorflow.

KittiSeg KittiSeg performs segmentation of roads by utilizing an FCN based model. The model achieved first place on the Kitti Road Detection Benchmark

Marvin Teichmann 890 Jan 04, 2023
Spectralformer: Rethinking hyperspectral image classification with transformers

The code in this toolbox implements the "Spectralformer: Rethinking hyperspectral image classification with transformers". More specifically, it is detailed as follow.

Danfeng Hong 104 Jan 04, 2023
根据midi文件演奏“风物之诗琴”的脚本 "Windsong Lyre" auto play

Genshin-lyre-auto-play 简体中文 | English 简介 根据midi文件演奏“风物之诗琴”的脚本。由Python驱动,在此承诺, ⚠️ 项目内绝不含任何能够引起安全问题的代码。 前排提示:所有键盘在动但是原神没反应的都是因为没有管理员权限,双击run.bat或者以管理员模式

御坂17032号 386 Jan 01, 2023
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).

PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR)

Ilya Kostrikov 3k Dec 31, 2022
Official repository of the paper "A Variational Approximation for Analyzing the Dynamics of Panel Data". Mixed Effect Neural ODE. UAI 2021.

Official repository of the paper (UAI 2021) "A Variational Approximation for Analyzing the Dynamics of Panel Data", Mixed Effect Neural ODE. Panel dat

Jurijs Nazarovs 7 Nov 26, 2022
Pure python PEMDAS expression solver without using built-in eval function

pypemdas Pure python PEMDAS expression solver without using built-in eval function. Supports nested parenthesis. Supported operators: + - * / ^ Exampl

1 Dec 22, 2021
AWS provides a Python SDK, "Boto3" ,which can be used to access the AWS-account from the local.

Boto3 - The AWS SDK for Python Boto3 is the Amazon Web Services (AWS) Software Development Kit (SDK) for Python, which allows Python developers to wri

Shreyas Srivastava 1 Oct 25, 2021
DeepFill v1/v2 with Contextual Attention and Gated Convolution, CVPR 2018, and ICCV 2019 Oral

Generative Image Inpainting An open source framework for generative image inpainting task, with the support of Contextual Attention (CVPR 2018) and Ga

2.9k Dec 16, 2022
Tensorflow Tutorials using Jupyter Notebook

Tensorflow Tutorials using Jupyter Notebook TensorFlow tutorials written in Python (of course) with Jupyter Notebook. Tried to explain as kindly as po

Sungjoon 2.6k Dec 22, 2022