[ICML 2021] “ Self-Damaging Contrastive Learning”, Ziyu Jiang, Tianlong Chen, Bobak Mortazavi, Zhangyang Wang

Related tags

Deep LearningSDCLR
Overview

Self-Damaging Contrastive Learning

Introduction

The recent breakthrough achieved by contrastive learning accelerates the pace for deploying unsupervised training on real-world data applications. However, unlabeled data in reality is commonly imbalanced and shows a long-tail distribution, and it is unclear how robustly the latest contrastive learning methods could perform in the practical scenario. This paper proposes to explicitly tackle this challenge, via a principled framework called Self-Damaging Contrastive Learning (SDCLR), to automatically balance the representation learning without knowing the classes. Our main inspiration is drawn from the recent finding that deep models have difficult-to-memorize samples, and those may be exposed through network pruning [1]. It is further natural to hypothesize that long-tail samples are also tougher for the model to learn well due to insufficient examples. Hence, the key innovation in SDCLR is to create a dynamic self-competitor model to contrast with the target model, which is a pruned version of the latter. During training, contrasting the two models will lead to adaptive online mining of the most easily forgotten samples for the current target model, and implicitly emphasize them more in the contrastive loss. Extensive experiments across multiple datasets and imbalance settings show that SDCLR significantly improves not only overall accuracies but also balancedness, in terms of linear evaluation on the full-shot and few-shot settings.

[1] Hooker, Sara, et al. "What Do Compressed Deep Neural Networks Forget?." arXiv preprint arXiv:1911.05248 (2019).

Method

pipeline The overview of the proposed SDCLR framework. Built on top of simCLR pipeline by default, the uniqueness of SDCLR lies in its two different network branches: one is the target model to be trained, and the other "self-competitor" model that is pruned from the former online. The two branches share weights for their non-pruned parameters. Either branch has its independent batch normalization layers. Since the self-competitor is always obtained and updated from the latest target model, the two branches will co-evolve during training. Their contrasting will implicitly give more weights on long-tail samples.

Environment

Requirements:

pytorch 1.7.1 
opencv-python
scikit-learn 
matplotlib

Recommend installation cmds (linux)

conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.2 -c pytorch # change cuda version according to hardware
pip install opencv-python
conda install -c conda-forge scikit-learn matplotlib

Details about and Imagenet-100-LT Imagenet-LT-exp

Imagenet-100-LT sampling list

Imagenet-LT-exp sampling list

Pretrained models downloading

CIFAR10: pretraining, fine-tuning

CIFAR100: pretraining, fine-tuning

Imagenet100/Imagenet: pretraining, fine-tuning

Train and evaluate pretrained models

Before all

chmod +x  cmds/shell_scrips/*

CIFAR10

SimCLR on balanced training datasets

# pre-train and finetune
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-10-LT.sh -g 1 -w 8 --split split${split_num}_D_b
done

# evaluate pretrained model (after download and unzip the pretrained model)
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-10-LT.sh -g 1 -w 8 --split split${split_num}_D_b  --only_finetuning True  --test_only True
done

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset cifar10
# few shot
python exp_analyse.py --dataset cifar10 --fewShot

SimCLR on long tail training datasets

# pre-train and finetune
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-10-LT.sh -g 1 -w 8 --split split${split_num}_D_i
done

# evaluate pretrained model (after download and unzip the pretrained model)
for split_num in 1 2 3 4 5 
do
./cmds/shell_scrips/cifar-10-LT.sh -g 1 -w 8 --split split${split_num}_D_i --only_finetuning True --test_only True
done

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset cifar10 --LT
# few shot
python exp_analyse.py --dataset cifar10 --LT --fewShot

SDCLR on long tail training datasets

# pre-train and finetune
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-10-LT.sh -g 1 -w 8 --split split${split_num}_D_i --prune True --prune_percent 0.9 --prune_dual_bn True
done

# evaluate pretrained model (after download and unzip the pretrained model)
for split_num in 1 2 3 4 5 
do
./cmds/shell_scrips/cifar-10-LT.sh -g 1 -w 8 --split split${split_num}_D_i --prune True --prune_percent 0.9 --prune_dual_bn True --only_finetuning True --test_only True
done

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset cifar10 --LT --prune
# few shot
python exp_analyse.py --dataset cifar10 --LT --prune --fewShot

CIFAR100

SimCLR on balanced training datasets

# pre-train and finetune
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-100-LT.sh -g 1 -p 4867 -w 8 --split cifar100_split${split_num}_D_b
done

# evaluate pretrained model (after download and unzip the pretrained model)
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-100-LT.sh -g 1 -p 4867 -w 8 --split cifar100_split${split_num}_D_b --only_finetuning True --test_only True
done

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset cifar100
# few shot
python exp_analyse.py --dataset cifar100 --fewShot

SimCLR on long tail training datasets

# pre-train and finetune
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-100-LT.sh -g 1 -p 4867 -w 8 --split cifar100_split${split_num}_D_i
done

# evaluate pretrained model (after download and unzip the pretrained model)
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-100-LT.sh -g 1 -p 4867 -w 8 --split cifar100_split${split_num}_D_i --only_finetuning True --test_only True
done

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset cifar100 --LT
# few shot
python exp_analyse.py --dataset cifar100 --LT --fewShot

SDCLR on long tail training datasets

# pre-train and finetune
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-100-LT.sh -g 1 -p 4867 -w 8 --split cifar100_split${split_num}_D_i --prune True --prune_percent 0.9 --prune_dual_bn True
done

# evaluate pretrained model (after download and unzip the pretrained model)
for split_num in 1 2 3 4 5
do
./cmds/shell_scrips/cifar-100-LT.sh -g 1 -p 4867 -w 8 --split cifar100_split${split_num}_D_i --prune True --prune_percent 0.9 --prune_dual_bn True --only_finetuning True --test_only True
done

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset cifar100 --LT --prune
# few shot
python exp_analyse.py --dataset cifar100 --LT --prune --fewShot

Imagenet-100-LT

SimCLR on balanced training datasets

# pre-train and finetune
./cmds/shell_scrips/imagenet-100-res50-LT.sh --data \path\to\imagenet -g 2 -p 4867 -w 10 --split imageNet_100_BL_train

# evaluate pretrained model (after download and unzip the pretrained model)
./cmds/shell_scrips/imagenet-100-res50-LT.sh --data \path\to\imagenet -g 2 -p 4867 -w 10 --split imageNet_100_BL_train --only_finetuning True --test_only True

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset imagenet100
# few shot
python exp_analyse.py --dataset imagenet100 --fewShot

SimCLR on long tail training datasets

# pre-train and finetune
./cmds/shell_scrips/imagenet-100-res50-LT.sh --data \path\to\imagenet -g 2 -p 4867 -w 10 --split imageNet_100_LT_train

# evaluate pretrained model (after download and unzip the pretrained model)
./cmds/shell_scrips/imagenet-100-res50-LT.sh --data \path\to\imagenet -g 2 -p 4860 -w 10 --split imageNet_100_LT_train --only_finetuning True --test_only True

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset imagenet100 --LT
# few shot
python exp_analyse.py --dataset imagenet100 --LT --fewShot

SDCLR on long tail training datasets

# pre-train and finetune
./cmds/shell_scrips/imagenet-100-res50-LT.sh --data \path\to\imagenet -g 2 -p 4867 -w 10 --split imageNet_100_LT_train --prune True --prune_percent 0.3 --prune_dual_bn True --temp 0.3

# evaluate pretrained model (after download and unzip the pretrained model)
./cmds/shell_scrips/imagenet-100-res50-LT.sh --data \path\to\imagenet -g 2 -p 4860 -w 10 --split imageNet_100_LT_train --prune True --prune_percent 0.3 --prune_dual_bn True --temp 0.3 --only_finetuning True --test_only True

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset imagenet100 --LT --prune
# few shot
python exp_analyse.py --dataset imagenet100 --LT --prune --fewShot

Imagenet-Exp-LT

SimCLR on balanced training datasets

# pre-train and finetune
./cmds/shell_scrips/imagenet-res50-LT.sh --data \path\to\imagenet -g 2 -p 4867 -w 10 --split imageNet_BL_exp_train

# evaluate pretrained model (after download and unzip the pretrained model)
./cmds/shell_scrips/imagenet-res50-LT.sh --data \path\to\imagenet -g 2 -p 4867 -w 10 --split imageNet_BL_exp_train --only_finetuning True --test_only True

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset imagenet
# few shot
python exp_analyse.py --dataset imagenet --fewShot

SimCLR on long tail training datasets

# pre-train and finetune
./cmds/shell_scrips/imagenet-res50-LT.sh --data \path\to\imagenet -g 2 -p 4867 -w 10 --split imageNet_LT_exp_train

# evaluate pretrained model (after download and unzip the pretrained model)
./cmds/shell_scrips/imagenet-res50-LT.sh --data \path\to\imagenet -g 2 -p 4868 -w 10 --split imageNet_LT_exp_train --only_finetuning True --test_only True

# summery result (after "pre-train and finetune" or "evaluate pretrained model")
# linear separability
python exp_analyse.py --dataset imagenet --LT
# few shot
python exp_analyse.py --dataset imagenet --LT --fewShot

Citation

@inproceedings{
jiang2021self,
title={Self-Damaging Contrastive Learning},
author={Jiang, Ziyu and Chen, Tianlong and Mortazavi, Bobak and Wang, Zhangyang},
booktitle={International Conference on Machine Learning},
year={2021}
}
Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
Implementation of Stochastic Image-to-Video Synthesis using cINNs.

Stochastic Image-to-Video Synthesis using cINNs Official PyTorch implementation of Stochastic Image-to-Video Synthesis using cINNs accepted to CVPR202

CompVis Heidelberg 135 Dec 28, 2022
NHS AI Lab Skunkworks project: Long Stayer Risk Stratification

NHS AI Lab Skunkworks project: Long Stayer Risk Stratification A pilot project for the NHS AI Lab Skunkworks team, Long Stayer Risk Stratification use

NHSX 21 Nov 14, 2022
Implementation of our paper "DMT: Dynamic Mutual Training for Semi-Supervised Learning"

DMT: Dynamic Mutual Training for Semi-Supervised Learning This repository contains the code for our paper DMT: Dynamic Mutual Training for Semi-Superv

Zhengyang Feng 120 Dec 30, 2022
Official code for paper "Optimization for Oriented Object Detection via Representation Invariance Loss".

Optimization for Oriented Object Detection via Representation Invariance Loss By Qi Ming, Zhiqiang Zhou, Lingjuan Miao, Xue Yang, and Yunpeng Dong. Th

ming71 56 Nov 28, 2022
Code of Puregaze: Purifying gaze feature for generalizable gaze estimation, AAAI 2022.

PureGaze: Purifying Gaze Feature for Generalizable Gaze Estimation Description Our work is accpeted by AAAI 2022. Picture: We propose a domain-general

39 Dec 05, 2022
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
Official PyTorch implementation of "RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on" (IJCAI-ECAI 2022)

RMGN-VITON RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on In IJCAI-ECAI 2022(short oral). [Paper] [Supplementary Material] Abstra

27 Dec 01, 2022
C3D is a modified version of BVLC caffe to support 3D ConvNets.

C3D C3D is a modified version of BVLC caffe to support 3D convolution and pooling. The main supporting features include: Training or fine-tuning 3D Co

Meta Archive 1.1k Nov 14, 2022
A PyTorch implementation of "Capsule Graph Neural Network" (ICLR 2019).

CapsGNN ⠀⠀ A PyTorch implementation of Capsule Graph Neural Network (ICLR 2019). Abstract The high-quality node embeddings learned from the Graph Neur

Benedek Rozemberczki 1.2k Jan 02, 2023
A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi

LSTM-Time-Series-Prediction A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi Contest. The Link of the Cont

KevinCHEN 1 Jun 13, 2022
Solution of Kaggle competition: Sartorius - Cell Instance Segmentation

Sartorius - Cell Instance Segmentation https://www.kaggle.com/c/sartorius-cell-instance-segmentation Environment setup Build docker image bash .dev_sc

68 Dec 09, 2022
Deploy recommendation engines with Edge Computing

RecoEdge: Bringing Recommendations to the Edge A one stop solution to build your recommendation models, train them and, deploy them in a privacy prese

NimbleEdge 131 Jan 02, 2023
Unofficial PyTorch implementation of TokenLearner by Google AI

tokenlearner-pytorch Unofficial PyTorch implementation of TokenLearner by Ryoo et al. from Google AI (abs, pdf) Installation You can install TokenLear

Rishabh Anand 46 Dec 20, 2022
Tools for investing in Python

InvestOps Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction This is a Python package with simple and effective

24 Nov 26, 2022
A set of examples around hub for creating and processing datasets

Examples for Hub - Dataset Format for AI A repository showcasing examples of using Hub Uploading Dataset Places365 Colab Tutorials Notebook Link Getti

Activeloop 11 Dec 14, 2022
This repo provides the official code for TransBTS: Multimodal Brain Tumor Segmentation Using Transformer (https://arxiv.org/pdf/2103.04430.pdf).

TransBTS: Multimodal Brain Tumor Segmentation Using Transformer This repo is the official implementation for TransBTS: Multimodal Brain Tumor Segmenta

Raymond 247 Dec 28, 2022
LRBoost is a scikit-learn compatible approach to performing linear residual based stacking/boosting.

LRBoost is a sckit-learn compatible package for linear residual boosting. LRBoost combines a linear estimator and a non-linear estimator to leverage t

Andrew Patton 5 Nov 23, 2022
Use your Philips Hue lights as Racing Flags. Works with Assetto Corsa, Assetto Corsa Competizione and iRacing.

phue-racing-flags Use your Philips Hue lights as Racing Flags. Explore the docs » Report Bug · Request Feature Table of Contents About The Project Bui

50 Sep 03, 2022
Official implementation of the paper ``Unifying Nonlocal Blocks for Neural Networks'' (ICCV'21)

Spectral Nonlocal Block Overview Official implementation of the paper: Unifying Nonlocal Blocks for Neural Networks (ICCV'21) Spectral View of Nonloca

91 Dec 14, 2022