Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Overview

OverLORD - Official PyTorch Implementation

Scaling-up Disentanglement for Image Translation
Aviv Gabbay and Yedid Hoshen
International Conference on Computer Vision (ICCV), 2021.

Abstract: Image translation methods typically aim to manipulate a set of labeled attributes (given as supervision at training time e.g. domain label) while leaving the unlabeled attributes intact. Current methods achieve either: (i) disentanglement, which exhibits low visual fidelity and can only be satisfied where the attributes are perfectly uncorrelated. (ii) visually-plausible translations, which are clearly not disentangled. In this work, we propose OverLORD, a single framework for disentangling labeled and unlabeled attributes as well as synthesizing high-fidelity images, which is composed of two stages; (i) Disentanglement: Learning disentangled representations with latent optimization. Differently from previous approaches, we do not rely on adversarial training or any architectural biases. (ii) Synthesis: Training feed-forward encoders for inferring the learned attributes and tuning the generator in an adversarial manner to increase the perceptual quality. When the labeled and unlabeled attributes are correlated, we model an additional representation that accounts for the correlated attributes and improves disentanglement. We highlight that our flexible framework covers multiple settings as disentangling labeled attributes, pose and appearance, localized concepts, and shape and texture. We present significantly better disentanglement with higher translation quality and greater output diversity than state-of-the-art methods.

Description

A framework for high-fidelity disentanglement of labeled and unlabeled attributes. We support two general cases: (i) The labeled and unlabeled attributes are approximately uncorrelated. (ii) The labeled and unlabeled attributes are correlated. For this case, we suggest simple forms of transformations for learning pose-independent or localized correlated attributes, by which we achieve better disentanglement both quantitatively and qualitatively than state-of-the-art methods.

Case 1: Uncorrelated Labeled and Unlabeled Attributes

  • Facial age editing: Disentanglement of labeled age and uncorrelated unlabeled attributes (FFHQ).
Input [0-9] [10-19] [50-59] [70-79]
  • Disentanglement of labeled identity and uncorrelated unlabeled attributes (CelebA).
Identity Attributes #1 Translation #1 Attributes #2 Translation #2
  • Disentanglement of labeled shape (edge map) and unlabeled texture (Edges2Shoes).
Texture Shape #1 Translation #1 Shape #2 Translation #2

Case 2: Correlated Labeled and Unlabeled Attributes

  • Disentanglement of domain label (cat, dog or wild), correlated appearance and uncorrelated pose. FUNIT and StarGAN-v2 rely on architectural biases that tightly preserve the spatial structure, leading to unreliable facial shapes which are unique to the source domain. We disentangle the pose and capture the appearance of the target breed faithfully.
Pose Appearance FUNIT StarGAN-v2 Ours
  • Male-to-Female translation in two settings: (i) When the gender is assumed to be approximately uncorrelated with all the unlabeled attributes. (ii) When we model the hairstyle as localized correlation and utilize a reference image specifying its target.
Input Ours [uncorrelated] Reference StarGAN-v2 Ours [correlated]

Requirements

python 3.7 pytorch 1.3 cuda 10.1

This repository imports modules from the StyleGAN2 architecture (not pretrained). Clone the following repository:

git clone https://github.com/rosinality/stylegan2-pytorch

Add the local StyleGAN2 project to PYTHONPATH. For bash users:

export PYTHONPATH=
   

   

Training

In order to train a model from scratch, do the following preprocessing and training steps. First, create a directory (can be specified by --base-dir or set to current working directory by default) for the training artifacts (preprocessed data, models, training logs, etc).

Facial Age Editing (FFHQ):

Download the FFHQ dataset and annotations. Create a directory named ffhq-dataset with all the png images placed in a single imgs subdir and all the json annotations placed in a features subdir.

python main.py preprocess --dataset-id ffhq --dataset-path ffhq-dataset --out-data-name ffhq-x256-age
python main.py train --config ffhq --data-name ffhq-x256-age --model-name overlord-ffhq-x256-age

Facial Identity Disentanglement (CelebA)

Download the aligned and cropped images from the CelebA dataset to a new directory named celeba-dataset.

python main.py preprocess --dataset-id celeba --dataset-path celeba-dataset --out-data-name celeba-x128-identity
python main.py train --config celeba --data-name celeba-x128-identity --model-name overlord-celeba-x128-identity

Pose and Appearance Disentanglement (AFHQ)

Download the AFHQ dataset to a new directory named afhq-dataset.

python main.py preprocess --dataset-id afhq --dataset-path afhq-dataset --split train --out-data-name afhq-x256
python main.py train --config afhq --data-name afhq-x256 --model-name overlord-afhq-x256

Male-to-Female Translation (CelebA-HQ)

Download the CelebA-HQ dataset and create a directory named celebahq-dataset with all the images placed in a single imgs subdir. Download CelebAMask-HQ from MaskGAN and extract as another subdir under the dataset root directory.

python main.py preprocess --dataset-id celebahq --dataset-path celebahq-dataset --out-data-name celebahq-x256-gender

Training a model for the uncorrelated case:

python main.py train --config celebahq --data-name celebahq-x256-gender --model-name overlord-celebahq-x256-gender

Training a model with modeling hairstyle as localized correlation:

python main.py train --config celebahq_hair --data-name celebahq-x256-gender --model-name overlord-celebahq-x256-gender-hair

Resources

The training automatically detects all the available gpus and applies multi-gpu mode if available.

Logs

During training, loss metrics and translation visualizations are logged with tensorboard and can be viewed by:

tensorboard --logdir 
   
    /cache/tensorboard --load_fast true

   

Pretrained Models

We provide several pretrained models for the main experiments presented in the paper. Please download the entire directory of each model and place it under /cache/models .

Model Description
overlord-ffhq-x256-age OverLORD trained on FFHQ for facial age editing.
overlord-celeba-x128-identity OverLORD trained on CelebA for facial identity disentanglement.
overlord-afhq-x256 OverLORD trained on AFHQ for pose and appearance disentanglement.
overlord-celebahq-x256-gender OverLORD trained on CelebA-HQ for male-to-female translation.
overlord-celebahq-x256-gender-hair OverLORD trained on CelebA-HQ for male-to-female translation with hairstyle as localized correlation.

Inference

Given a trained model (either pretrained or trained from scratch), a test image can be manipulated as follows:

python main.py manipulate --model-name overlord-ffhq-x256-age --img face.png --output face_in_all_ages.png
python main.py manipulate --model-name overlord-celeba-x128-identity --img attributes.png --reference identity.png --output translation.png
python main.py manipulate --model-name overlord-afhq-x256 --img pose.png --reference appearance.png --output translation.png 
python main.py manipulate --model-name overlord-celebahq-x256-gender --img face.png --output face_in_all_genders.png
python main.py manipulate --model-name overlord-celebahq-x256-gender-hair --img face.png --reference hairstyle.png --output translation.png

Note: Face manipulation models are very sensitive to the face alignment. The target face should be aligned exactly as done in the pipeline which CelebA-HQ and FFHQ were created by. Use the alignment method implemented here before applying any of the human face manipulation models on external images.

Citation

@inproceedings{gabbay2021overlord,
  author    = {Aviv Gabbay and Yedid Hoshen},
  title     = {Scaling-up Disentanglement for Image Translation},
  booktitle = {International Conference on Computer Vision (ICCV)},
  year      = {2021}
}
Owner
Aviv Gabbay
PhD student at Hebrew University of Jerusalem. Computer Vision, Speech Processing and Deep Learning Researcher
Aviv Gabbay
Diffusion Normalizing Flow (DiffFlow) Neurips2021

Diffusion Normalizing Flow (DiffFlow) Reproduce setup environment The repo heavily depends on jam, a personal toolbox developed by Qsh.zh. The API may

76 Jan 01, 2023
Experiments and code to generate the GINC small-scale in-context learning dataset from "An Explanation for In-context Learning as Implicit Bayesian Inference"

GINC small-scale in-context learning dataset GINC (Generative In-Context learning Dataset) is a small-scale synthetic dataset for studying in-context

P-Lambda 29 Dec 19, 2022
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
[ICLR 2021] HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark Accepted as a spotlight paper at ICLR 2021. Table of content File structure Prerequi

72 Jan 03, 2023
Anomaly detection analysis and labeling tool, specifically for multiple time series (one time series per category)

taganomaly Anomaly detection labeling tool, specifically for multiple time series (one time series per category). Taganomaly is a tool for creating la

Microsoft 272 Dec 17, 2022
Node-level Graph Regression with Deep Gaussian Process Models

Node-level Graph Regression with Deep Gaussian Process Models Prerequests our implementation is mainly based on tensorflow 1.x and gpflow 1.x: python

1 Jan 16, 2022
Pocsploit is a lightweight, flexible and novel open source poc verification framework

Pocsploit is a lightweight, flexible and novel open source poc verification framework

cckuailong 208 Dec 24, 2022
PyTorch EO aims to make Deep Learning for Earth Observation data easy and accessible to real-world cases and research alike.

Pytorch EO Deep Learning for Earth Observation applications and research. 🚧 This project is in early development, so bugs and breaking changes are ex

earthpulse 28 Aug 25, 2022
tf2onnx - Convert TensorFlow, Keras and Tflite models to ONNX.

tf2onnx converts TensorFlow (tf-1.x or tf-2.x), tf.keras and tflite models to ONNX via command line or python api.

Open Neural Network Exchange 1.8k Jan 08, 2023
FairFuzz: AFL extension targeting rare branches

FairFuzz An AFL extension to increase code coverage by targeting rare branches. FairFuzz has a particular advantage on programs with highly nested str

Caroline Lemieux 222 Nov 16, 2022
A powerful framework for decentralized federated learning with user-defined communication topology

Scatterbrained Decentralized Federated Learning Scatterbrained makes it easy to build federated learning systems. In addition to traditional federated

Johns Hopkins Applied Physics Laboratory 7 Sep 26, 2022
BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition 2022)

BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition

Rui Qian 17 Dec 12, 2022
This application is the basic of automated online-class-joiner(for YıldızEdu) within the right time. Gets the ZOOM link by scheduled date and time.

This application is the basic of automated online-class-joiner(for YıldızEdu) within the right time. Gets the ZOOM link by scheduled date and time.

215355 1 Dec 16, 2021
Luminaire is a python package that provides ML driven solutions for monitoring time series data.

A hands-off Anomaly Detection Library Table of contents What is Luminaire Quick Start Time Series Outlier Detection Workflow Anomaly Detection for Hig

Zillow 670 Jan 02, 2023
A bare-bones Python library for quality diversity optimization.

pyribs Website Source PyPI Conda CI/CD Docs Docs Status Twitter pyribs.org GitHub docs.pyribs.org A bare-bones Python library for quality diversity op

ICAROS 127 Jan 06, 2023
Code for the Active Speakers in Context Paper (CVPR2020)

Active Speakers in Context This repo contains the official code and models for the "Active Speakers in Context" CVPR 2020 paper. Before Training The c

43 Oct 14, 2022
Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

607 Dec 31, 2022
Hcaptcha-challenger - Gracefully face hCaptcha challenge with Yolov5(ONNX) embedded solution

hCaptcha Challenger 🚀 Gracefully face hCaptcha challenge with Yolov5(ONNX) embe

593 Jan 03, 2023
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".

Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S

51 Dec 20, 2022
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023