Learning Open-World Object Proposals without Learning to Classify

Overview

Learning Open-World Object Proposals without Learning to Classify

Pytorch implementation for "Learning Open-World Object Proposals without Learning to Classify" (arXiv 2021)

Dahun Kim, Tsung-Yi Lin, Anelia Angelova, In So Kweon, and Weicheng Kuo.

@article{kim2021oln,
  title={Learning Open-World Object Proposals without Learning to Classify},
  author={Kim, Dahun and Lin, Tsung-Yi and Angelova, Anelia and Kweon, In So and Kuo, Weicheng},
  journal={arXiv preprint arXiv:2108.06753},
  year={2021}
}

Introduction

Humans can recognize novel objects in this image despite having never seen them before. “Is it possible to learn open-world (novel) object proposals?” In this paper we propose Object Localization Network (OLN) that learns localization cues instead of foreground vs background classification. Only trained on COCO, OLN is able to propose many novel objects (top) missed by Mask R-CNN (bottom) on an out-of-sample frame in an ego-centric video.


Cross-category generalization on COCO

We train OLN on COCO VOC categories, and test on non-VOC categories. Note our [email protected] evaluation does not count those proposals on the 'seen' classes into the budget (k), to avoid evaluating recall on see-class objects.

Method AUC [email protected] [email protected] [email protected] [email protected] [email protected] Download
OLN-Box 24.8 18.0 26.4 33.4 39.0 45.0 model

Disclaimer

This repo is tested under Python 3.7, PyTorch 1.7.0, Cuda 11.0, and mmcv==1.2.5.

Installation

This repo is built based on mmdetection.

You can use following commands to create conda env with related dependencies.

conda create -n oln python=3.7 -y
conda activate oln
conda install pytorch=1.7.0 torchvision cudatoolkit=11.0 -c pytorch -y
pip install mmcv-full
pip install -r requirements.txt
pip install -v -e . 

Please also refer to get_started.md for more details of installation.

Prepare datasets

COCO dataset is available from official websites. It is recommended to download and extract the dataset somewhere outside the project directory and symlink the dataset root to $OLN/data as below.

object_localization_network
├── mmdet
├── tools
├── configs
├── data
│   ├── coco
│   │   ├── annotations
│   │   ├── train2017
│   │   ├── val2017
│   │   ├── test2017

Testing

Our trained models are available for download here. Place it under trained_weights/latest.pth and run the following commands to test OLN on COCO dataset.

# Multi-GPU distributed testing
bash tools/dist_test_bbox.sh configs/oln_box/oln_box.py \
trained_weights/latest.pth ${NUM_GPUS}
# OR
python tools/test.py configs/oln_box/oln_box.py work_dirs/oln_box/latest.pth --eval bbox

Training

# Multi-GPU distributed training
bash tools/dist_train.sh configs/oln_box/oln_box.py ${NUM_GPUS}

Contact

If you have any questions regarding the repo, please contact Dahun Kim ([email protected]) or create an issue.

Owner
Dahun Kim
Korea Advanced Institute of Science and Technology
Dahun Kim
A stock generator that assess a list of stocks and returns the best stocks for investing and money allocations based on users choices of volatility, duration and number of stocks

Stock-Generator Please visit "Stock Generator.ipynb" for a clearer view and "Stock Generator.py" for scripts. The stock generator is designed to allow

jmengnyay 1 Aug 02, 2022
Pairwise learning neural link prediction for ogb link prediction

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
This repository contains the source codes for the paper AtlasNet V2 - Learning Elementary Structures.

AtlasNet V2 - Learning Elementary Structures This work was build upon Thibault Groueix's AtlasNet and 3D-CODED projects. (you might want to have a loo

Théo Deprelle 123 Nov 11, 2022
Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Seamless Manga Inpainting with Semantics Awareness [SIGGRAPH 2021](To appear) | Project Website | BibTex Introduction: Manga inpainting fills up the d

101 Jan 01, 2023
[CVPR 2021] Scan2Cap: Context-aware Dense Captioning in RGB-D Scans

Scan2Cap: Context-aware Dense Captioning in RGB-D Scans Introduction We introduce the task of dense captioning in 3D scans from commodity RGB-D sensor

Dave Z. Chen 79 Nov 07, 2022
Implementation of Memory-Compressed Attention, from the paper "Generating Wikipedia By Summarizing Long Sequences"

Memory Compressed Attention Implementation of the Self-Attention layer of the proposed Memory-Compressed Attention, in Pytorch. This repository offers

Phil Wang 47 Dec 23, 2022
XtremeDistil framework for distilling/compressing massive multilingual neural network models to tiny and efficient models for AI at scale

XtremeDistilTransformers for Distilling Massive Multilingual Neural Networks ACL 2020 Microsoft Research [Paper] [Video] Releasing [XtremeDistilTransf

Microsoft 125 Jan 04, 2023
A naive ROS interface for visualDet3D.

YOLO3D ROS Node This repo contains a Monocular 3D detection Ros node. Base on https://github.com/Owen-Liuyuxuan/visualDet3D All parameters are exposed

Yuxuan Liu 19 Oct 08, 2022
Multimodal commodity image retrieval 多模态商品图像检索

Multimodal commodity image retrieval 多模态商品图像检索 Not finished yet... introduce explain:The specific description of the project and the product image dat

hongjie 8 Nov 25, 2022
WiFi-based Multi-task Sensing

WiFi-based Multi-task Sensing Introduction WiFi-based sensing has aroused immense attention as numerous studies have made significant advances over re

zhangx289 6 Nov 24, 2022
🔀 Visual Room Rearrangement

AI2-THOR Rearrangement Challenge Welcome to the 2021 AI2-THOR Rearrangement Challenge hosted at the CVPR'21 Embodied-AI Workshop. The goal of this cha

AI2 55 Dec 22, 2022
Honours project, on creating a depth estimation map from two stereo images of featureless regions

image-processing This module generates depth maps for shape-blocked-out images Install If working with anaconda, then from the root directory: conda e

2 Oct 17, 2022
Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021)

Substrate_Mediated_Invasion Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021) 2DSolver.jl reproduces the simulat

Matthew Simpson 0 Nov 09, 2021
PyTorch implementation of Federated Learning with Non-IID Data, and federated learning algorithms, including FedAvg, FedProx.

Federated Learning with Non-IID Data This is an implementation of the following paper: Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, Vik

Youngjoon Lee 48 Dec 29, 2022
N-Omniglot is a large neuromorphic few-shot learning dataset

N-Omniglot [Paper] || [Dataset] N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses D

11 Dec 05, 2022
Python implementation of Project Fluent

Project Fluent This is a collection of Python packages to use the Fluent localization system. python-fluent consists of these packages: fluent.syntax

Project Fluent 155 Dec 28, 2022
PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos

PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos. By adopting a unified pipeline-ba

PyKale 370 Dec 27, 2022
Self-supervised learning on Graph Representation Learning (node-level task)

graph_SSL Self-supervised learning on Graph Representation Learning (node-level task) How to run the code To run GRACE, sh run_GRACE.sh To run GCA, sh

Namkyeong Lee 3 Dec 31, 2021
An end-to-end library for editing and rendering motion of 3D characters with deep learning [SIGGRAPH 2020]

Deep-motion-editing This library provides fundamental and advanced functions to work with 3D character animation in deep learning with Pytorch. The co

1.2k Dec 29, 2022
Provide baselines and evaluation metrics of the task: traffic flow prediction

Note: This repo is adpoted from https://github.com/UNIMIBInside/Smart-Mobility-Prediction. Due to technical reasons, I did not fork their code. Introd

Zhangzhi Peng 11 Nov 02, 2022