PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentation.

Overview

Shape-aware Convolutional Layer (ShapeConv)

PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentation.

Introduction

We design a Shape-aware Convolutional(ShapeConv) layer to explicitly model the shape information for enhancing the RGB-D semantic segmentation accuracy. Specifically, we decompose the depth feature into a shape-component and a value component, after which two learnable weights are introduced to handle the shape and value with differentiation. Extensive experiments on three challenging indoor RGB-D semantic segmentation benchmarks, i.e., NYU-Dv2(-13,-40), SUN RGB-D, and SID, demonstrate the effectiveness of our ShapeConv when employing it over five popular architectures.

image

Usage

Installation

  1. Requirements
  • Linux
  • Python 3.6+
  • PyTorch 1.7.0 or higher
  • CUDA 10.0 or higher

We have tested the following versions of OS and softwares:

  • OS: Ubuntu 16.04.6 LTS
  • CUDA: 10.0
  • PyTorch 1.7.0
  • Python 3.6.9
  1. Install dependencies.
pip install -r requirements.txt

Dataset

Download the offical dataset and convert to a format appropriate for this project. See here.

Or download the converted dataset:

Evaluation

  1. Model

    Download trained model and put it in folder ./model_zoo. See all trained models here.

  2. Config

    Edit config file in ./config. The config files in ./config correspond to the model files in ./models.

    1. Set inference.gpu_id = CUDA_VISIBLE_DEVICES. CUDA_VISIBLE_DEVICES is used to specify which GPUs should be visible to a CUDA application, e.g., inference.gpu_id = "0,1,2,3".
    2. Set dataset_root = path_to_dataset. path_to_dataset represents the path of dataset. e.g.,dataset_root = "/home/shape_conv/nyu_v2".
  3. Run

    1. Ditributed evaluation, please run:
    ./tools/dist_test.sh config_path checkpoint_path gpu_num
    • config_path is path of config file;
    • checkpoint_pathis path of model file;
    • gpu_num is the number of GPUs used, note that gpu_num <= len(inference.gpu_id).

    E.g., evaluate shape-conv model on NYU-V2(40 categories), please run:

    ./tools/dist_test.sh configs/nyu/nyu40_deeplabv3plus_resnext101_shape.py model_zoo/nyu40_deeplabv3plus_resnext101_shape.pth 4
    1. Non-distributed evaluation
    python tools/test.py config_path checkpoint_path

Train

  1. Config

    Edit config file in ./config.

    1. Set inference.gpu_id = CUDA_VISIBLE_DEVICES.

      E.g.,inference.gpu_id = "0,1,2,3".

    2. Set dataset_root = path_to_dataset.

      E.g.,dataset_root = "/home/shape_conv/nyu_v2".

  2. Run

    1. Ditributed training
    ./tools/dist_train.sh config_path gpu_num

    E.g., train shape-conv model on NYU-V2(40 categories) with 4 GPUs, please run:

    ./tools/dist_train.sh configs/nyu/nyu40_deeplabv3plus_resnext101_shape.py 4
    1. Non-distributed training
    python tools/train.py config_path

Result

For more result, please see model zoo.

NYU-V2(40 categories)

Architecture Backbone MS & Flip Shape Conv mIOU
DeepLabv3plus ResNeXt-101 False False 48.9%
DeepLabv3plus ResNeXt-101 False True 50.2%
DeepLabv3plus ResNeXt-101 True False 50.3%
DeepLabv3plus ResNeXt-101 True True 51.3%

SUN-RGBD

Architecture Backbone MS & Flip Shape Conv mIOU
DeepLabv3plus ResNet-101 False False 46.9%
DeepLabv3plus ResNet-101 False True 47.6%
DeepLabv3plus ResNet-101 True False 47.6%
DeepLabv3plus ResNet-101 True True 48.6%

SID(Stanford Indoor Dataset)

Architecture Backbone MS & Flip Shape Conv mIOU
DeepLabv3plus ResNet-101 False False 54.55%
DeepLabv3plus ResNet-101 False True 60.6%

Acknowledgments

This repo was developed based on vedaseg.

Owner
Hanchao Leng
Hanchao Leng
Graph Robustness Benchmark: A scalable, unified, modular, and reproducible benchmark for evaluating the adversarial robustness of Graph Machine Learning.

Homepage | Paper | Datasets | Leaderboard | Documentation Graph Robustness Benchmark (GRB) provides scalable, unified, modular, and reproducible evalu

THUDM 66 Dec 22, 2022
StorSeismic: An approach to pre-train a neural network to store seismic data features

StorSeismic: An approach to pre-train a neural network to store seismic data features This repository contains codes and resources to reproduce experi

Seismic Wave Analysis Group 11 Dec 05, 2022
From Perceptron model to Deep Neural Network from scratch in Python.

Neural-Network-Basics Aim of this Repository: From Perceptron model to Deep Neural Network (from scratch) in Python. ** Currently working on a basic N

Aditya Kahol 1 Jan 14, 2022
Code repository for "Stable View Synthesis".

Stable View Synthesis Code repository for "Stable View Synthesis". Setup Install the following Python packages in your Python environment - numpy (1.1

Intelligent Systems Lab Org 195 Dec 24, 2022
Code for Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights

Piggyback: https://arxiv.org/abs/1801.06519 Pretrained masks and backbones are available here: https://uofi.box.com/s/c5kixsvtrghu9yj51yb1oe853ltdfz4q

Arun Mallya 165 Nov 22, 2022
A pytorch &keras implementation and demo of Fastformer.

Fastformer Notes from the authors Pytorch/Keras implementation of Fastformer. The keras version only includes the core fastformer attention part. The

153 Dec 28, 2022
Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks]

Neural Architecture Search for Spiking Neural Networks Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks] (https

Intelligent Computing Lab at Yale University 28 Nov 18, 2022
QueryFuzz implements a metamorphic testing approach to test Datalog engines.

Datalog is a popular query language with applications in several domains. Like any complex piece of software, Datalog engines may contain bugs. The mo

34 Sep 10, 2022
Numba-accelerated Pythonic implementation of MPDATA with examples in Python, Julia and Matlab

PyMPDATA PyMPDATA is a high-performance Numba-accelerated Pythonic implementation of the MPDATA algorithm of Smolarkiewicz et al. used in geophysical

Atmospheric Cloud Simulation Group @ Jagiellonian University 15 Nov 23, 2022
Transfer SemanticKITTI labeles into other dataset/sensor formats.

LiDAR-Transfer Transfer SemanticKITTI labeles into other dataset/sensor formats. Content Convert datasets (NUSCENES, FORD, NCLT) to KITTI format Minim

Photogrammetry & Robotics Bonn 64 Nov 21, 2022
A project that uses optical flow and machine learning to detect aimhacking in video clips.

waldo-anticheat A project that aims to use optical flow and machine learning to visually detect cheating or hacking in video clips from fps games. Che

waldo.vision 542 Dec 03, 2022
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI 2022)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022
Photographic Image Synthesis with Cascaded Refinement Networks - Pytorch Implementation

Photographic Image Synthesis with Cascaded Refinement Networks-Pytorch (https://arxiv.org/abs/1707.09405) This is a Pytorch implementation of cascaded

Soumya Tripathy 63 Mar 27, 2022
Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB)

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
Link prediction using Multiple Order Local Information (MOLI)

Understanding the network formation pattern for better link prediction Authors: [e

Wu Lab 0 Oct 18, 2021
Builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques

This project builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques.

20 Dec 30, 2022
QueryDet: Cascaded Sparse Query for Accelerating High-Resolution SmallObject Detection

QueryDet-PyTorch This repository is the official implementation of our paper: QueryDet: Cascaded Sparse Query for Accelerating High-Resolution Small O

Chenhongyi Yang 276 Dec 31, 2022
Adversarial Autoencoders

Adversarial Autoencoders (with Pytorch) Dependencies argparse time torch torchvision numpy itertools matplotlib Create Datasets python create_datasets

Felipe Ducau 188 Jan 01, 2023
A pure PyTorch implementation of the loss described in "Online Segment to Segment Neural Transduction"

ssnt-loss ℹ️ This is a WIP project. the implementation is still being tested. A pure PyTorch implementation of the loss described in "Online Segment t

張致強 1 Feb 09, 2022
Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021)

Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021) Paper Video Instance Segmentation using Inter-Frame Communicat

Sukjun Hwang 81 Dec 29, 2022