PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentation.

Overview

Shape-aware Convolutional Layer (ShapeConv)

PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentation.

Introduction

We design a Shape-aware Convolutional(ShapeConv) layer to explicitly model the shape information for enhancing the RGB-D semantic segmentation accuracy. Specifically, we decompose the depth feature into a shape-component and a value component, after which two learnable weights are introduced to handle the shape and value with differentiation. Extensive experiments on three challenging indoor RGB-D semantic segmentation benchmarks, i.e., NYU-Dv2(-13,-40), SUN RGB-D, and SID, demonstrate the effectiveness of our ShapeConv when employing it over five popular architectures.

image

Usage

Installation

  1. Requirements
  • Linux
  • Python 3.6+
  • PyTorch 1.7.0 or higher
  • CUDA 10.0 or higher

We have tested the following versions of OS and softwares:

  • OS: Ubuntu 16.04.6 LTS
  • CUDA: 10.0
  • PyTorch 1.7.0
  • Python 3.6.9
  1. Install dependencies.
pip install -r requirements.txt

Dataset

Download the offical dataset and convert to a format appropriate for this project. See here.

Or download the converted dataset:

Evaluation

  1. Model

    Download trained model and put it in folder ./model_zoo. See all trained models here.

  2. Config

    Edit config file in ./config. The config files in ./config correspond to the model files in ./models.

    1. Set inference.gpu_id = CUDA_VISIBLE_DEVICES. CUDA_VISIBLE_DEVICES is used to specify which GPUs should be visible to a CUDA application, e.g., inference.gpu_id = "0,1,2,3".
    2. Set dataset_root = path_to_dataset. path_to_dataset represents the path of dataset. e.g.,dataset_root = "/home/shape_conv/nyu_v2".
  3. Run

    1. Ditributed evaluation, please run:
    ./tools/dist_test.sh config_path checkpoint_path gpu_num
    • config_path is path of config file;
    • checkpoint_pathis path of model file;
    • gpu_num is the number of GPUs used, note that gpu_num <= len(inference.gpu_id).

    E.g., evaluate shape-conv model on NYU-V2(40 categories), please run:

    ./tools/dist_test.sh configs/nyu/nyu40_deeplabv3plus_resnext101_shape.py model_zoo/nyu40_deeplabv3plus_resnext101_shape.pth 4
    1. Non-distributed evaluation
    python tools/test.py config_path checkpoint_path

Train

  1. Config

    Edit config file in ./config.

    1. Set inference.gpu_id = CUDA_VISIBLE_DEVICES.

      E.g.,inference.gpu_id = "0,1,2,3".

    2. Set dataset_root = path_to_dataset.

      E.g.,dataset_root = "/home/shape_conv/nyu_v2".

  2. Run

    1. Ditributed training
    ./tools/dist_train.sh config_path gpu_num

    E.g., train shape-conv model on NYU-V2(40 categories) with 4 GPUs, please run:

    ./tools/dist_train.sh configs/nyu/nyu40_deeplabv3plus_resnext101_shape.py 4
    1. Non-distributed training
    python tools/train.py config_path

Result

For more result, please see model zoo.

NYU-V2(40 categories)

Architecture Backbone MS & Flip Shape Conv mIOU
DeepLabv3plus ResNeXt-101 False False 48.9%
DeepLabv3plus ResNeXt-101 False True 50.2%
DeepLabv3plus ResNeXt-101 True False 50.3%
DeepLabv3plus ResNeXt-101 True True 51.3%

SUN-RGBD

Architecture Backbone MS & Flip Shape Conv mIOU
DeepLabv3plus ResNet-101 False False 46.9%
DeepLabv3plus ResNet-101 False True 47.6%
DeepLabv3plus ResNet-101 True False 47.6%
DeepLabv3plus ResNet-101 True True 48.6%

SID(Stanford Indoor Dataset)

Architecture Backbone MS & Flip Shape Conv mIOU
DeepLabv3plus ResNet-101 False False 54.55%
DeepLabv3plus ResNet-101 False True 60.6%

Acknowledgments

This repo was developed based on vedaseg.

Owner
Hanchao Leng
Hanchao Leng
A GridMixup augmentation, inspired by GridMask and CutMix

GridMixup A GridMixup augmentation, inspired by GridMask and CutMix Easy install pip install git+https://github.com/IlyaDobrynin/GridMixup.git Overvie

IlyaDo 42 Dec 28, 2022
Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures.

NLP_0-project Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures1. We are a "democratic" and c

3 Mar 16, 2022
Code for "LoRA: Low-Rank Adaptation of Large Language Models"

LoRA: Low-Rank Adaptation of Large Language Models This repo contains the implementation of LoRA in GPT-2 and steps to replicate the results in our re

Microsoft 394 Jan 08, 2023
This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

The-Emergence-of-Objectness This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

44 Oct 08, 2022
Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomaly Detection

Why, hello there! This is the supporting notebook for the research paper — Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomal

2 Dec 14, 2021
Source code for deep symbolic optimization.

Update July 10, 2021: This repository now supports an additional symbolic optimization task: learning symbolic policies for reinforcement learning. Th

Brenden Petersen 290 Dec 25, 2022
QuakeLabeler is a Python package to create and manage your seismic training data, processes, and visualization in a single place — so you can focus on building the next big thing.

QuakeLabeler Quake Labeler was born from the need for seismologists and developers who are not AI specialists to easily, quickly, and independently bu

Hao Mai 15 Nov 04, 2022
From this paper "SESNet: A Semantically Enhanced Siamese Network for Remote Sensing Change Detection"

SESNet for remote sensing image change detection It is the implementation of the paper: "SESNet: A Semantically Enhanced Siamese Network for Remote Se

1 May 24, 2022
RetinaFace: Deep Face Detection Library in TensorFlow for Python

RetinaFace is a deep learning based cutting-edge facial detector for Python coming with facial landmarks.

Sefik Ilkin Serengil 512 Dec 29, 2022
Repo for CVPR2021 paper "QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information"

QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information by Masato Tamura, Hiroki Ohashi, and Tomoaki Yosh

105 Dec 23, 2022
TransCD: Scene Change Detection via Transformer-based Architecture

TransCD: Scene Change Detection via Transformer-based Architecture

wangzhixue 29 Dec 11, 2022
GndNet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles using deep neural networks.

GndNet: Fast Ground plane Estimation and Point Cloud Segmentation for Autonomous Vehicles. Authors: Anshul Paigwar, Ozgur Erkent, David Sierra Gonzale

Anshul Paigwar 114 Dec 29, 2022
Really awesome semantic segmentation

really-awesome-semantic-segmentation A list of all papers on Semantic Segmentation and the datasets they use. This site is maintained by Holger Caesar

Holger Caesar 400 Nov 28, 2022
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.

Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut

Bin Xiao 175 Jan 08, 2023
This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

4 Aug 02, 2022
PyTorch implementation of "ContextNet: Improving Convolutional Neural Networks for Automatic Speech Recognition with Global Context" (INTERSPEECH 2020)

ContextNet ContextNet has CNN-RNN-transducer architecture and features a fully convolutional encoder that incorporates global context information into

Sangchun Ha 24 Nov 24, 2022
Synthetic LiDAR sequential point cloud dataset with point-wise annotations

SynLiDAR dataset: Learning From Synthetic LiDAR Sequential Point Cloud This is official repository of the SynLiDAR dataset. For technical details, ple

78 Dec 27, 2022
Extremely easy multi instancing software for minecraft speedrunning.

Easy Multi Extremely easy multi/single instancing software for minecraft speedrunning. A couple of goals of this project: Setup multi in minutes No fi

Duncan 8 Jul 16, 2022
Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

DTU Acoustic Technology Group 11 Dec 17, 2022
Road Crack Detection Using Deep Learning Methods

Road-Crack-Detection-Using-Deep-Learning-Methods This is my Diploma Thesis ¨Road Crack Detection Using Deep Learning Methods¨ under the supervision of

Aggelos Katsaliros 3 May 03, 2022