Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning

Overview

Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning

Reference

 Abeßer, J. & Müller, M. Towards Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning, submitted to: ICASSP 2022

Related Work

  • we use pre-computed features & model architecture used in 3 previous papers
    • these are all unsupervised domain adaptation methods
    Mezza, A. I., Habets, E. A. P., Müller, M., & Sarti, A. (2021).
    #Unsupervised domain adaptation for acoustic scene classification
    using band-wise statistics matching. Proceedings of the European
    Signal Processing Conference (EUSIPCO), 11–15.
    https://doi.org/10.23919/Eusipco47968.2020.9287533"

    Drossos, K., Magron, P., & Virtanen, T. (2019). Unsupervised Adversarial Domain Adaptation based
    on the Wasserstein Distance for Acoustic Scene Classification. Proceedings of the IEEE Workshop
    on Applications of Signal Processing to Audio and Acoustics (WASPAA), 259–263. New Paltz, NY, USA.

    Gharib, S., Drossos, K., Emre, C., Serdyuk, D., & Virtanen, T. (2018). Unsupervised Adversarial Domain
    Adaptation for Acoustic Scene Classification. Proceedings of the Detection and Classification of
    Acoustic Scenes and Events (DCASE). Surrey, UK.

Files

  • configs.py - Training configurations (C0 ... C3M)
  • generator.py - Data generator
  • losses.py - Loss implementations
  • model.py - Function to create dual-input / dual-output model
  • model_kaggle.py - reference CNN model from related work for acoustic scene classification (ASC)
  • normalization.py - Normalization methods (see Mezza et al. above)
  • params.py - General parameters
  • prediction.py - Prediction script to evaluate models on test data
  • training.py - Script to run the model training for 6 different configurations (see Fig. 2 in the paper)

How to run

  • create python environment (e.g. with conda), the following versions were used during the paper preparation process
    • librosa==0.8.0
    • matplotlib==3.3.2
    • numpy=1.19.2
    • python=3.7.0
    • scikit-learn==0.23.2
    • tensorflow==2.3.0
    • torch==1.9.0
  • set in params.py the following variables
  • run python training.py && python prediction.py on a GPU device to train & evaluate the models
Owner
Jakob Abeßer
Passionate bass guitar player and percussionist. Senior Scientist at Fraunhofer IDMT. PhD in Music Information Retrieval.
Jakob Abeßer
This is an example of object detection on Micro bacterium tuberculosis using Mask-RCNN

Mask-RCNN on Mycobacterium tuberculosis This is an example of object detection on Mycobacterium Tuberculosis using Mask RCNN. Implement of Mask R-CNN

Jun-En Ding 1 Sep 16, 2021
A PyTorch implementation of the continual learning experiments with deep neural networks

Brain-Inspired Replay A PyTorch implementation of the continual learning experiments with deep neural networks described in the following paper: Brain

182 Dec 27, 2022
AQP is a modular pipeline built to enable the comparison and testing of different quality metric configurations.

Audio Quality Platform - AQP An Open Modular Python Platform for Objective Speech and Audio Quality Metrics AQP is a highly modular pipeline designed

Jack Geraghty 24 Oct 01, 2022
The `rtdl` library + The official implementation of the paper

The `rtdl` library + The official implementation of the paper "Revisiting Deep Learning Models for Tabular Data"

Yandex Research 510 Dec 30, 2022
Advanced Signal Processing Notebooks and Tutorials

Advanced Digital Signal Processing Notebooks and Tutorials Prof. Dr. -Ing. Gerald Schuller Jupyter Notebooks and Videos: Renato Profeta Applied Media

Guitars.AI 115 Dec 13, 2022
Social Distancing Detector

Computer vision has opened up a lot of opportunities to explore into AI domain that were earlier highly limited. Here is an application of haarcascade classifier and OpenCV to develop a social distan

Ashish Pandey 2 Jul 18, 2022
Driller: augmenting AFL with symbolic execution!

Driller Driller is an implementation of the driller paper. This implementation was built on top of AFL with angr being used as a symbolic tracer. Dril

Shellphish 791 Jan 06, 2023
A Quick and Dirty Progressive Neural Network written in TensorFlow.

prog_nn .▄▄ · ▄· ▄▌ ▐ ▄ ▄▄▄· ▐ ▄ ▐█ ▀. ▐█▪██▌•█▌▐█▐█ ▄█▪ •█▌▐█ ▄▀▀▀█▄▐█▌▐█▪▐█▐▐▌ ██▀

SynPon 53 Dec 12, 2022
RoMa: A lightweight library to deal with 3D rotations in PyTorch.

RoMa: A lightweight library to deal with 3D rotations in PyTorch. RoMa (which stands for Rotation Manipulation) provides differentiable mappings betwe

NAVER 90 Dec 27, 2022
Implementation of the paper ''Implicit Feature Refinement for Instance Segmentation''.

Implicit Feature Refinement for Instance Segmentation This repository is an official implementation of the ACM Multimedia 2021 paper Implicit Feature

Lufan Ma 17 Dec 28, 2022
PolyTrack: Tracking with Bounding Polygons

PolyTrack: Tracking with Bounding Polygons Abstract In this paper, we present a novel method called PolyTrack for fast multi-object tracking and segme

Gaspar Faure 13 Sep 15, 2022
Signals-backend - A suite of card games written in Python

Card game A suite of card games written in the Python language. Features coming

1 Feb 15, 2022
AI-Fitness-Tracker - AI Fitness Tracker With Python

AI-Fitness-Tracker We have build a AI based Fitness Tracker using OpenCV and Pyt

Sharvari Mangale 5 Feb 09, 2022
PyTorch implementation for Convolutional Networks with Adaptive Inference Graphs

Convolutional Networks with Adaptive Inference Graphs (ConvNet-AIG) This repository contains a PyTorch implementation of the paper Convolutional Netwo

Andreas Veit 176 Dec 07, 2022
SNIPS: Solving Noisy Inverse Problems Stochastically

SNIPS: Solving Noisy Inverse Problems Stochastically This repo contains the official implementation for the paper SNIPS: Solving Noisy Inverse Problem

Bahjat Kawar 35 Nov 09, 2022
Wind Speed Prediction using LSTMs in PyTorch

Implementation of Deep-Forecast using PyTorch Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting Adapted from original implementation Setu

Onur Kaplan 151 Dec 14, 2022
Unsupervised Feature Ranking via Attribute Networks.

FRANe Unsupervised Feature Ranking via Attribute Networks (FRANe) converts a dataset into a network (graph) with nodes that correspond to the features

7 Sep 29, 2022
[ICCV 2021] Official Tensorflow Implementation for "Single Image Defocus Deblurring Using Kernel-Sharing Parallel Atrous Convolutions"

KPAC: Kernel-Sharing Parallel Atrous Convolutional block This repository contains the official Tensorflow implementation of the following paper: Singl

Hyeongseok Son 50 Dec 29, 2022
Learning Representational Invariances for Data-Efficient Action Recognition

Learning Representational Invariances for Data-Efficient Action Recognition Official PyTorch implementation for Learning Representational Invariances

Virginia Tech Vision and Learning Lab 27 Nov 22, 2022
A python software that can help blind people find things like laptops, phones, etc the same way a guide dog guides a blind person in finding his way.

GuidEye A python software that can help blind people find things like laptops, phones, etc the same way a guide dog guides a blind person in finding h

Munal Jain 0 Aug 09, 2022