This is a Python implementation of cover trees, a data structure for finding nearest neighbors in a general metric space (e.g., a 3D box with periodic boundary conditions). Cover trees are described in two papers hosted here: http://hunch.net/~jl/projects/cover_tree/cover_tree.html The implementation here owes a great deal to PyCoverTree, by Thomas Kollar, Nil Geisweiller, Emanuele Olivetti, which can be found here: http://github.com/emanuele/PyCoverTree The API follows that of Anne M. Archibald's KD-tree implementation for scipy (scipy.spatial.kdtree). Other than specifying a distance function in the constructor, this module can be used as a drop-in replacement for kdtree.
Python implementation of cover trees, near-drop-in replacement for scipy.spatial.kdtree
Overview
Original code for "Zero-Shot Domain Adaptation with a Physics Prior"
Zero-Shot Domain Adaptation with a Physics Prior [arXiv] [sup. material] - ICCV 2021 Oral paper, by Attila Lengyel, Sourav Garg, Michael Milford and J
TRACER: Extreme Attention Guided Salient Object Tracing Network implementation in PyTorch
TRACER: Extreme Attention Guided Salient Object Tracing Network This paper was accepted at AAAI 2022 SA poster session. Datasets All datasets are avai
Official implement of Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer
Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer This repository contains the PyTorch code for Evo-ViT. This work proposes a slow-fas
code for our ECCV 2020 paper "A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation"
Code for our ECCV (2020) paper A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation. Prerequisites: python == 3.6.8 pytorch ==1.1.0
Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning.
xTune Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning. Environment DockerFile: dancingsoul/pytorch:xTune Install the f
Code for paper Novel View Synthesis via Depth-guided Skip Connections
Novel View Synthesis via Depth-guided Skip Connections Code for paper Novel View Synthesis via Depth-guided Skip Connections @InProceedings{Hou_2021_W
Filtering variational quantum algorithms for combinatorial optimization
Current gate-based quantum computers have the potential to provide a computational advantage if algorithms use quantum hardware efficiently.
Reinforcement learning framework and algorithms implemented in PyTorch.
Reinforcement learning framework and algorithms implemented in PyTorch.
Video Autoencoder: self-supervised disentanglement of 3D structure and motion
Video Autoencoder: self-supervised disentanglement of 3D structure and motion This repository contains the code (in PyTorch) for the model introduced
FNet Implementation with TensorFlow & PyTorch
FNet Implementation with TensorFlow & PyTorch. TensorFlow & PyTorch implementation of the paper "FNet: Mixing Tokens with Fourier Transforms". Overvie
To build a regression model to predict the concrete compressive strength based on the different features in the training data.
Cement-Strength-Prediction Problem Statement To build a regression model to predict the concrete compressive strength based on the different features
A Python training and inference implementation of Yolov5 helmet detection in Jetson Xavier nx and Jetson nano
yolov5-helmet-detection-python A Python implementation of Yolov5 to detect head or helmet in the wild in Jetson Xavier nx and Jetson nano. In Jetson X
People log into different sites every day to get information and browse through these sites one by one
HyperLink People log into different sites every day to get information and browse through these sites one by one. And they are exposed to advertisemen
using STGCN to achieve egg classification task
EEG Classification The task requires us to classify electroencephalography(EEG) into six categories, including human body, human face, animal body,
Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB HUAWEI P40 NCNN benchmark: 6ms/img,
Ultralight-SimplePose Support NCNN mobile terminal deployment Based on MXNET(=1.5.1) GLUON(=0.7.0) framework Top-down strategy: The input image is t
Rapid experimentation and scaling of deep learning models on molecular and crystal graphs.
LitMatter A template for rapid experimentation and scaling deep learning models on molecular and crystal graphs. How to use Clone this repository and
Implements an infinite sum of poisson-weighted convolutions
An infinite sum of Poisson-weighted convolutions Kyle Cranmer, Aug 2018 If viewing on GitHub, this looks better with nbviewer: click here Consider a v
Code for "Learning Graph Cellular Automata"
Learning Graph Cellular Automata This code implements the experiments from the NeurIPS 2021 paper: "Learning Graph Cellular Automata" Daniele Grattaro
Anomaly detection analysis and labeling tool, specifically for multiple time series (one time series per category)
taganomaly Anomaly detection labeling tool, specifically for multiple time series (one time series per category). Taganomaly is a tool for creating la
This repo in the implementation of EMNLP'21 paper "SPARQLing Database Queries from Intermediate Question Decompositions" by Irina Saparina, Anton Osokin
SPARQLing Database Queries from Intermediate Question Decompositions This repo is the implementation of the following paper: SPARQLing Database Querie