PiRank: Learning to Rank via Differentiable Sorting

Related tags

Deep Learningpirank
Overview

PiRank: Learning to Rank via Differentiable Sorting

This repository provides a reference implementation for learning PiRank-based models as described in the paper:

PiRank: Learning to Rank via Differentiable Sorting
Robin Swezey, Aditya Grover, Bruno Charron and Stefano Ermon.
Paper: https://arxiv.org/abs/2012.06731

Requirements

The codebase is implemented in Python 3.7. To install the necessary base requirements, run the following commands:

pip install -r requirements.txt

If you intend to use a GPU, modify requirements.txt to install tensorflow-gpu instead of tensorflow.

You will also need the NeuralSort implementation available here. Make sure it is added to your PYTHONPATH.

Datasets

PiRank was tested on the two following datasets:

Additionally, the code is expected to work with any dataset stored in the standard LibSVM format used for LTR experiments.

Scripts

There are two scripts for the code:

  • pirank_simple.py implements a simple depth-1 PiRank loss (d=1). It is used in the experiments of sections 4.1 (benchmark evaluation on MSLR-WEB30K and Yahoo! C14 datasets), 4.2.1 (effect of temperature parameter), and 4.2.2 (effect of training list size).

  • pirank_deep.py implements the deeper PiRank losses (d>=1). It is used for the experiments of section 4.2.3 and comes with a convenient synthetic data generator as well as more tuning options.

Options

Options are handled by Sacred (see Examples section below).

pirank_simple.py and pirank_deep.py

PiRank-related:

Parameter Default Value Description
loss_fn pirank_simple_loss The loss function to use (either a TFR RankingLossKey, or loss function from the script)
ste False Whether to use the Straight-Through Estimator
ndcg_k 15 [email protected] cutoff when using NS-NDCG loss

NeuralSort-related:

Parameter Default Value Description
tau 5 Temperature
taustar 1e-10 Temperature for trues and straight-through estimation.

TensorFlow-Ranking and architecture-related:

Parameter Default Value Description
hidden_layers "256,tanh,128,tanh,64,tanh" Hidden layers for an example-wise feedforward network in the format size,activation,...,size,activation
num_features 136 Number of features per document. The default value is for MSLR and depends on the dataset (e.g. for Yahoo!, please change to 700).
list_size 100 List size used for training
group_size 1 Group size used in score function

Training-related:

Parameter Default Value Description
train_path "/data/MSLR-WEB30K/Fold*/train.txt" Input file path used for training
vali_path "/data/MSLR-WEB30K/Fold*/vali.txt" Input file path used for validation
test_path "/data/MSLR-WEB30K/Fold*/test.txt" Input file path used for testing
model_dir None Output directory for models
num_epochs 200 Number of epochs to train, set 0 to just test
lr 1e-4 initial learning rate
batch_size 32 The batch size for training
num_train_steps None Number of steps for training
num_vali_steps None Number of steps for validation
num_test_steps None Number of steps for testing
learning_rate 0.01 Learning rate for optimizer
dropout_rate 0.5 The dropout rate before output layer
optimizer Adagrad The optimizer for gradient descent

Sacred:

In addition, you can use regular parameters from Sacred (such as -m for logging the experiment to MongoDB).

pirank_deep.py only

Parameter Default Value Description
merge_block_size None Block size used if merging, None if not merging
top_k None Use a different Top-k for merging than final [email protected] for loss
straight_backprop False Backpropagate on scores only through NS operator
full_loss False Use the complete loss at the end of merge
tau_scheme None Which scheme to use for temperature going deeper (default: constant)
data_generator None Data generator (default: TFR\s libsvm); use this for synthetic generation
num_queries 30000 Number of queries for synthetic data generator
num_query_features 10 Number of columns used as factors for each query by synthetic data generator
actual_list_size None Size of actual list per query in synthetic data generation
train_path "/data/MSLR-WEB30K/Fold*/train.txt" Input file path used for training; alternatively value of seed if using data generator
vali_path "/data/MSLR-WEB30K/Fold*/vali.txt" Input file path used for validation; alternatively value of seed if using data generator
test_path "/data/MSLR-WEB30K/Fold*/test.txt" Input file path used for testing; alternatively value of seed if using data generator
with_opa True Include pairwise metric OPA

Examples

Run the benchmark experiment of section 4.1 with PiRank simple loss on MSLR-WEB30K

cd pirank
python3 pirank_simple.py with loss_fn=pirank_simple_loss \
    ndcg_k=10 \
    tau=5 \
    list_size=80 \
    hidden_layers=256,relu,256,relu,128,relu,64,relu \
    train_path=/data/MSLR-WEB30K/Fold1/train.txt \
    vali_path=/data/MSLR-WEB30K/Fold1/vali.txt \
    test_path=/data/MSLR-WEB30K/Fold1/test.txt \
    num_features=136 \
    optimizer=Adam \
    learning_rate=0.00001 \
    num_epochs=100 \
    batch_size=16 \
    model_dir=/tmp/model

Run the benchmark experiment of section 4.1 with PiRank simple loss on Yahoo! C14

cd pirank
python3 pirank_simple.py with loss_fn=pirank_simple_loss \
    ndcg_k=10 \
    tau=5 \
    list_size=80 \
    hidden_layers=256,relu,256,relu,128,relu,64,relu \
    train_path=/data/YAHOO/set1.train.txt \
    vali_path=/data/YAHOO/set1.valid.txt \
    test_path=/data/YAHOO/set1.test.txt \
    num_features=700 \
    optimizer=Adam \
    learning_rate=0.00001 \
    num_epochs=100 \
    batch_size=16 \
    model_dir=/tmp/model

Run the benchmark experiment of section 4.1 with classic LambdaRank on MSLR-WEB30K

cd pirank
python3 pirank_simple.py with loss_fn=lambda_rank_loss \
    ndcg_k=10 \
    tau=5 \
    list_size=80 \
    hidden_layers=256,relu,256,relu,128,relu,64,relu \
    train_path=/data/MSLR-WEB30K/Fold1/train.txt \
    vali_path=/data/MSLR-WEB30K/Fold1/vali.txt \
    test_path=/data/MSLR-WEB30K/Fold1/test.txt \
    num_features=136 \
    optimizer=Adam \
    learning_rate=0.00001 \
    num_epochs=100 \
    batch_size=16 \
    model_dir=/tmp/model

Run the scaling ablation experiment of section 4.2.3 using synthetic data generation (d=2)

cd pirank
python3 pirank_deep.py with loss_fn=pirank_deep_loss \
    ndcg_k=10 \
    ste=True \
    merge_block_size=100 \
    tau=5 \
    taustar=1e-10 \
    tau_scheme=square \
    data_generator=synthetic_data_generator \
    actual_list_size=1000 \
    list_size=1000 \
    vali_list_size=1000 \
    test_list_size=1000 \
    full_loss=False \
    train_path=0 \
    vali_path=1 \
    test_path=2 \
    num_queries=1000 \
    num_features=25 \
    num_query_features=5 \
    hidden_layers=256,relu,256,relu,128,relu,128,relu,64,relu,64,relu \
    optimizer=Adam \
    learning_rate=0.00001 \
    num_epochs=100 \
    batch_size=16

Help

If you need help, reach out to Robin Swezey or raise an issue.

Citing

If you find PiRank useful in your research, please consider citing the following paper:

@inproceedings{
swezey2020pirank,
title={PiRank: Learning to Rank via Differentiable Sorting},
author={Robin Swezey and Aditya Grover and Bruno Charron and Stefano Ermon},
year={2020},
url={},
}

Real-time LIDAR-based Urban Road and Sidewalk detection for Autonomous Vehicles 🚗

urban_road_filter: a real-time LIDAR-based urban road and sidewalk detection algorithm for autonomous vehicles Dependency ROS (tested with Kinetic and

JKK - Vehicle Industry Research Center 180 Dec 12, 2022
A annotation of yolov5-5.0

代码版本:0714 commit #4000 $ git clone https://github.com/ultralytics/yolov5 $ cd yolov5 $ git checkout 720aaa65c8873c0d87df09e3c1c14f3581d4ea61 这个代码只是注释版

Laughing 229 Dec 17, 2022
This repository contains tutorials for the py4DSTEM Python package

py4DSTEM Tutorials This repository contains tutorials for the py4DSTEM Python package. For more information about py4DSTEM, including installation ins

11 Dec 23, 2022
ESL: Event-based Structured Light

ESL: Event-based Structured Light Video (click on the image) This is the code for the 2021 3DV paper ESL: Event-based Structured Light by Manasi Mugli

Robotics and Perception Group 29 Oct 24, 2022
Implementations of LSTM: A Search Space Odyssey variants and their training results on the PTB dataset.

An LSTM Odyssey Code for training variants of "LSTM: A Search Space Odyssey" on Fomoro. Check out the blog post. Training Install TensorFlow. Clone th

Fomoro AI 95 Apr 13, 2022
Official implementation of the paper Momentum Capsule Networks (MoCapsNet)

Momentum Capsule Network Official implementation of the paper Momentum Capsule Networks (MoCapsNet). Abstract Capsule networks are a class of neural n

8 Oct 20, 2022
Multiple-Object Tracking with Transformer

TransTrack: Multiple-Object Tracking with Transformer Introduction TransTrack: Multiple-Object Tracking with Transformer Models Training data Training

Peize Sun 537 Jan 04, 2023
Trading and Backtesting environment for training reinforcement learning agent or simple rule base algo.

TradingGym TradingGym is a toolkit for training and backtesting the reinforcement learning algorithms. This was inspired by OpenAI Gym and imitated th

Yvictor 1.1k Jan 02, 2023
A Simplied Framework of GAN Inversion

Framework of GAN Inversion Introcuction You can implement your own inversion idea using our repo. We offer a full range of tuning settings (in hparams

Kangneng Zhou 13 Sep 27, 2022
This folder contains the implementation of the multi-relational attribute propagation algorithm.

MrAP This folder contains the implementation of the multi-relational attribute propagation algorithm. It requires the package pytorch-scatter. Please

6 Dec 06, 2022
中文语音识别系列,读者可以借助它快速训练属于自己的中文语音识别模型,或直接使用预训练模型测试效果。

MASR中文语音识别(pytorch版) 开箱即用 自行训练 使用与训练分离(增量训练) 识别率高 说明:因为每个人电脑机器不同,而且有些安装包安装起来比较麻烦,强烈建议直接用我编译好的docker环境跑 目前docker基础环境为ubuntu-cuda10.1-cudnn7-pytorch1.6.

发送小信号 180 Dec 17, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

Wenhao Wang 89 Jan 02, 2023
The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 2021)

EIGNN: Efficient Infinite-Depth Graph Neural Networks The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 20

Juncheng Liu 14 Nov 22, 2022
Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions"

ModelNet-C Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions". For the latest updates, see: sites.google.com

Jiawei Ren 45 Dec 28, 2022
Video Matting Refinement For Python

Video-matting refinement Library (use pip to install) scikit-image numpy av matplotlib Run Static background python path_to_video.mp4 Moving backgroun

3 Jan 11, 2022
A semismooth Newton method for elliptic PDE-constrained optimization

sNewton4PDEOpt The Python module implements a semismooth Newton method for solving finite-element discretizations of the strongly convex, linear ellip

2 Dec 08, 2022
A modular domain adaptation library written in PyTorch.

A modular domain adaptation library written in PyTorch.

Kevin Musgrave 225 Dec 29, 2022
The Habitat-Matterport 3D Research Dataset - the largest-ever dataset of 3D indoor spaces.

Habitat-Matterport 3D Dataset (HM3D) The Habitat-Matterport 3D Research Dataset is the largest-ever dataset of 3D indoor spaces. It consists of 1,000

Meta Research 62 Dec 27, 2022
Expressive Power of Invariant and Equivaraint Graph Neural Networks (ICLR 2021)

Expressive Power of Invariant and Equivaraint Graph Neural Networks In this repository, we show how to use powerful GNN (2-FGNN) to solve a graph alig

Marc Lelarge 36 Dec 12, 2022
Code for BMVC2021 paper "Boundary Guided Context Aggregation for Semantic Segmentation"

Boundary-Guided-Context-Aggregation Boundary Guided Context Aggregation for Semantic Segmentation Haoxiang Ma, Hongyu Yang, Di Huang In BMVC'2021 Pape

Haoxiang Ma 31 Jan 08, 2023