PiRank: Learning to Rank via Differentiable Sorting

Related tags

Deep Learningpirank
Overview

PiRank: Learning to Rank via Differentiable Sorting

This repository provides a reference implementation for learning PiRank-based models as described in the paper:

PiRank: Learning to Rank via Differentiable Sorting
Robin Swezey, Aditya Grover, Bruno Charron and Stefano Ermon.
Paper: https://arxiv.org/abs/2012.06731

Requirements

The codebase is implemented in Python 3.7. To install the necessary base requirements, run the following commands:

pip install -r requirements.txt

If you intend to use a GPU, modify requirements.txt to install tensorflow-gpu instead of tensorflow.

You will also need the NeuralSort implementation available here. Make sure it is added to your PYTHONPATH.

Datasets

PiRank was tested on the two following datasets:

Additionally, the code is expected to work with any dataset stored in the standard LibSVM format used for LTR experiments.

Scripts

There are two scripts for the code:

  • pirank_simple.py implements a simple depth-1 PiRank loss (d=1). It is used in the experiments of sections 4.1 (benchmark evaluation on MSLR-WEB30K and Yahoo! C14 datasets), 4.2.1 (effect of temperature parameter), and 4.2.2 (effect of training list size).

  • pirank_deep.py implements the deeper PiRank losses (d>=1). It is used for the experiments of section 4.2.3 and comes with a convenient synthetic data generator as well as more tuning options.

Options

Options are handled by Sacred (see Examples section below).

pirank_simple.py and pirank_deep.py

PiRank-related:

Parameter Default Value Description
loss_fn pirank_simple_loss The loss function to use (either a TFR RankingLossKey, or loss function from the script)
ste False Whether to use the Straight-Through Estimator
ndcg_k 15 [email protected] cutoff when using NS-NDCG loss

NeuralSort-related:

Parameter Default Value Description
tau 5 Temperature
taustar 1e-10 Temperature for trues and straight-through estimation.

TensorFlow-Ranking and architecture-related:

Parameter Default Value Description
hidden_layers "256,tanh,128,tanh,64,tanh" Hidden layers for an example-wise feedforward network in the format size,activation,...,size,activation
num_features 136 Number of features per document. The default value is for MSLR and depends on the dataset (e.g. for Yahoo!, please change to 700).
list_size 100 List size used for training
group_size 1 Group size used in score function

Training-related:

Parameter Default Value Description
train_path "/data/MSLR-WEB30K/Fold*/train.txt" Input file path used for training
vali_path "/data/MSLR-WEB30K/Fold*/vali.txt" Input file path used for validation
test_path "/data/MSLR-WEB30K/Fold*/test.txt" Input file path used for testing
model_dir None Output directory for models
num_epochs 200 Number of epochs to train, set 0 to just test
lr 1e-4 initial learning rate
batch_size 32 The batch size for training
num_train_steps None Number of steps for training
num_vali_steps None Number of steps for validation
num_test_steps None Number of steps for testing
learning_rate 0.01 Learning rate for optimizer
dropout_rate 0.5 The dropout rate before output layer
optimizer Adagrad The optimizer for gradient descent

Sacred:

In addition, you can use regular parameters from Sacred (such as -m for logging the experiment to MongoDB).

pirank_deep.py only

Parameter Default Value Description
merge_block_size None Block size used if merging, None if not merging
top_k None Use a different Top-k for merging than final [email protected] for loss
straight_backprop False Backpropagate on scores only through NS operator
full_loss False Use the complete loss at the end of merge
tau_scheme None Which scheme to use for temperature going deeper (default: constant)
data_generator None Data generator (default: TFR\s libsvm); use this for synthetic generation
num_queries 30000 Number of queries for synthetic data generator
num_query_features 10 Number of columns used as factors for each query by synthetic data generator
actual_list_size None Size of actual list per query in synthetic data generation
train_path "/data/MSLR-WEB30K/Fold*/train.txt" Input file path used for training; alternatively value of seed if using data generator
vali_path "/data/MSLR-WEB30K/Fold*/vali.txt" Input file path used for validation; alternatively value of seed if using data generator
test_path "/data/MSLR-WEB30K/Fold*/test.txt" Input file path used for testing; alternatively value of seed if using data generator
with_opa True Include pairwise metric OPA

Examples

Run the benchmark experiment of section 4.1 with PiRank simple loss on MSLR-WEB30K

cd pirank
python3 pirank_simple.py with loss_fn=pirank_simple_loss \
    ndcg_k=10 \
    tau=5 \
    list_size=80 \
    hidden_layers=256,relu,256,relu,128,relu,64,relu \
    train_path=/data/MSLR-WEB30K/Fold1/train.txt \
    vali_path=/data/MSLR-WEB30K/Fold1/vali.txt \
    test_path=/data/MSLR-WEB30K/Fold1/test.txt \
    num_features=136 \
    optimizer=Adam \
    learning_rate=0.00001 \
    num_epochs=100 \
    batch_size=16 \
    model_dir=/tmp/model

Run the benchmark experiment of section 4.1 with PiRank simple loss on Yahoo! C14

cd pirank
python3 pirank_simple.py with loss_fn=pirank_simple_loss \
    ndcg_k=10 \
    tau=5 \
    list_size=80 \
    hidden_layers=256,relu,256,relu,128,relu,64,relu \
    train_path=/data/YAHOO/set1.train.txt \
    vali_path=/data/YAHOO/set1.valid.txt \
    test_path=/data/YAHOO/set1.test.txt \
    num_features=700 \
    optimizer=Adam \
    learning_rate=0.00001 \
    num_epochs=100 \
    batch_size=16 \
    model_dir=/tmp/model

Run the benchmark experiment of section 4.1 with classic LambdaRank on MSLR-WEB30K

cd pirank
python3 pirank_simple.py with loss_fn=lambda_rank_loss \
    ndcg_k=10 \
    tau=5 \
    list_size=80 \
    hidden_layers=256,relu,256,relu,128,relu,64,relu \
    train_path=/data/MSLR-WEB30K/Fold1/train.txt \
    vali_path=/data/MSLR-WEB30K/Fold1/vali.txt \
    test_path=/data/MSLR-WEB30K/Fold1/test.txt \
    num_features=136 \
    optimizer=Adam \
    learning_rate=0.00001 \
    num_epochs=100 \
    batch_size=16 \
    model_dir=/tmp/model

Run the scaling ablation experiment of section 4.2.3 using synthetic data generation (d=2)

cd pirank
python3 pirank_deep.py with loss_fn=pirank_deep_loss \
    ndcg_k=10 \
    ste=True \
    merge_block_size=100 \
    tau=5 \
    taustar=1e-10 \
    tau_scheme=square \
    data_generator=synthetic_data_generator \
    actual_list_size=1000 \
    list_size=1000 \
    vali_list_size=1000 \
    test_list_size=1000 \
    full_loss=False \
    train_path=0 \
    vali_path=1 \
    test_path=2 \
    num_queries=1000 \
    num_features=25 \
    num_query_features=5 \
    hidden_layers=256,relu,256,relu,128,relu,128,relu,64,relu,64,relu \
    optimizer=Adam \
    learning_rate=0.00001 \
    num_epochs=100 \
    batch_size=16

Help

If you need help, reach out to Robin Swezey or raise an issue.

Citing

If you find PiRank useful in your research, please consider citing the following paper:

@inproceedings{
swezey2020pirank,
title={PiRank: Learning to Rank via Differentiable Sorting},
author={Robin Swezey and Aditya Grover and Bruno Charron and Stefano Ermon},
year={2020},
url={},
}

Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic plasticity".

Impression-Learning-Camera-Ready Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic

2 Feb 09, 2022
Code for Boundary-Aware Segmentation Network for Mobile and Web Applications

BASNet Boundary-Aware Segmentation Network for Mobile and Web Applications This repository contain implementation of BASNet in tensorflow/keras. comme

Hamid Ali 8 Nov 24, 2022
YOLOv7 - Framework Beyond Detection

🔥🔥🔥🔥 YOLO with Transformers and Instance Segmentation, with TensorRT acceleration! 🔥🔥🔥

JinTian 3k Jan 01, 2023
Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech

EdiTTS: Score-based Editing for Controllable Text-to-Speech Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech. Au

Neosapience 98 Dec 25, 2022
A Fast Sequence Transducer Implementation with PyTorch Bindings

transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur

Awni Hannun 184 Dec 18, 2022
Exporter for Storage Area Network (SAN)

SAN Exporter Prometheus exporter for Storage Area Network (SAN). We all know that each SAN Storage vendor has their own glossary of terms, health/perf

vCloud 32 Dec 16, 2022
How Do Adam and Training Strategies Help BNNs Optimization? In ICML 2021.

AdamBNN This is the pytorch implementation of our paper "How Do Adam and Training Strategies Help BNNs Optimization?", published in ICML 2021. In this

Zechun Liu 47 Sep 20, 2022
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
Point Cloud Registration Network

PCRNet: Point Cloud Registration Network using PointNet Encoding Source Code Author: Vinit Sarode and Xueqian Li Paper | Website | Video | Pytorch Imp

ViNiT SaRoDe 59 Nov 19, 2022
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 07, 2022
Codes for [NeurIPS'21] You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership.

You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership Codes for [NeurIPS'21] You are caught stealing my winni

VITA 8 Nov 01, 2022
Official PyTorch Implementation of Rank & Sort Loss [ICCV2021]

Rank & Sort Loss for Object Detection and Instance Segmentation The official implementation of Rank & Sort Loss. Our implementation is based on mmdete

Kemal Oksuz 229 Dec 20, 2022
An implementation for Neural Architecture Search with Random Labels (CVPR 2021 poster) on Pytorch.

Neural Architecture Search with Random Labels(RLNAS) Introduction This project provides an implementation for Neural Architecture Search with Random L

18 Nov 08, 2022
A project for developing transformer-based models for clinical relation extraction

Clinical Relation Extration with Transformers Aim This package is developed for researchers easily to use state-of-the-art transformers models for ext

uf-hobi-informatics-lab 101 Dec 19, 2022
Official repository for "On Generating Transferable Targeted Perturbations" (ICCV 2021)

On Generating Transferable Targeted Perturbations (ICCV'21) Muzammal Naseer, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Fatih Porikli Paper:

Muzammal Naseer 46 Nov 17, 2022
FindFunc is an IDA PRO plugin to find code functions that contain a certain assembly or byte pattern, reference a certain name or string, or conform to various other constraints.

FindFunc: Advanced Filtering/Finding of Functions in IDA Pro FindFunc is an IDA Pro plugin to find code functions that contain a certain assembly or b

213 Dec 17, 2022
Static Features Classifier - A static features classifier for Point-Could clusters using an Attention-RNN model

Static Features Classifier This is a static features classifier for Point-Could

ABDALKARIM MOHTASIB 1 Jan 25, 2022
Collaborative forensic timeline analysis

Timesketch Table of Contents About Timesketch Getting started Community Contributing About Timesketch Timesketch is an open-source tool for collaborat

Google 2.1k Dec 28, 2022
Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021

Memory-Efficient Multi-Level In-Situ Generation (MLG) By Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen and David Z. Pan

Jiaqi Gu 2 Jan 04, 2022
Official Pytorch implementation of 6DRepNet: 6D Rotation representation for unconstrained head pose estimation.

6D Rotation Representation for Unconstrained Head Pose Estimation (Pytorch) Paper Thorsten Hempel and Ahmed A. Abdelrahman and Ayoub Al-Hamadi, "6D Ro

Thorsten Hempel 284 Dec 23, 2022