On Effective Scheduling of Model-based Reinforcement Learning

Related tags

Deep Learningautombpo
Overview

On Effective Scheduling of Model-based Reinforcement Learning

Code to reproduce the experiments in On Effective Scheduling of Model-based Reinforcement Learning.

Requirements

To install requirements:

pip install -r requirements.txt

Mujoco license is required to run the experiments on the Mujoco environments.

Training

To train the hyper-controller of the paper, run this command:

python train.py --env=
   

   

The env_name can be selected from [hopper,ant,humanoid,hopperbullet,walker2dbullet,halfcheetahbullet]. For example: python train.py --env=hopper

The trained hyper-controller will be saved in saved-models/. The computing infrastructure used in our experiments and the around computation time to train the hyper-controller is provided in Appendix G.

Evaluation

After training, to evaluate the trained hyper-controller, run:

python eval.py --config=config.
   
     --model_path=saved-models

   

The env_name can be selected from [hopper,ant,humanoid,hopperbullet,walker2dbullet,halfcheetahbullet]. For example: python eval.py --config=config.hopper --model_path=saved-models

Notice this command can only be run after finishing training the hyper-controller on the corresponding environments.

Pre-trained Models

We provided our pre-trained hyper-controller in pre-trained-models/ to better reproduce the experiments. To evaluate the pre-trained models, run:

python eval.py --config=config.
   
     --model_path=pre-trained-models

   

The env_name can be selected from [hopper,ant,humanoid,hopperbullet,walker2dbullet,halfcheetahbullet]. For example: python eval.py --config=config.hopper --model_path=pre-trained-models

Owner
laihang
laihang
TAUFE: Task-Agnostic Undesirable Feature DeactivationUsing Out-of-Distribution Data

A deep neural network (DNN) has achieved great success in many machine learning tasks by virtue of its high expressive power. However, its prediction can be easily biased to undesirable features, whi

KAIST Data Mining Lab 8 Dec 07, 2022
Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity

Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity, such as gratings, photonic-crystal slabs, metasurfaces, surf

Alex Song 17 Dec 19, 2022
Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

DTU Acoustic Technology Group 11 Dec 17, 2022
Code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data by Minimizing Predictive Variance

Semi-supervised Deep Kernel Learning This is the code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data

58 Oct 26, 2022
Self-labelling via simultaneous clustering and representation learning. (ICLR 2020)

Self-labelling via simultaneous clustering and representation learning πŸ†— πŸ†— πŸŽ‰ NEW models (20th August 2020): Added standard SeLa pretrained torchvis

Yuki M. Asano 469 Jan 02, 2023
Implementation of the πŸ˜‡ Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones

HaloNet - Pytorch Implementation of the Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones. This re

Phil Wang 189 Nov 22, 2022
This is a tensorflow-based rotation detection benchmark, also called AlphaRotate.

AlphaRotate: A Rotation Detection Benchmark using TensorFlow Abstract AlphaRotate is maintained by Xue Yang with Shanghai Jiao Tong University supervi

yangxue 972 Jan 05, 2023
Deep Learning ❀️ OneFlow

Deep Learning with OneFlow made easy πŸš€ ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. User Side Computer V

21 Oct 27, 2022
Gated-Shape CNN for Semantic Segmentation (ICCV 2019)

GSCNN This is the official code for: Gated-SCNN: Gated Shape CNNs for Semantic Segmentation Towaki Takikawa, David Acuna, Varun Jampani, Sanja Fidler

859 Dec 26, 2022
Dynamic hair modeling from monocular videos using deep neural networks

Dynamic Hair Modeling The source code of the networks for our paper "Dynamic hair modeling from monocular videos using deep neural networks" (SIGGRAPH

53 Oct 18, 2022
code from "Tensor decomposition of higher-order correlations by nonlinear Hebbian plasticity"

Code associated with the paper "Tensor decomposition of higher-order correlations by nonlinear Hebbian learning," Ocker & Buice, Neurips 2021. "plot_f

Gabriel Koch Ocker 4 Oct 16, 2022
A general-purpose, flexible, and easy-to-use simulator alongside an OpenAI Gym trading environment for MetaTrader 5 trading platform (Approved by OpenAI Gym)

gym-mtsim: OpenAI Gym - MetaTrader 5 Simulator MtSim is a simulator for the MetaTrader 5 trading platform alongside an OpenAI Gym environment for rein

Mohammad Amin Haghpanah 184 Dec 31, 2022
Gym Threat Defense

Gym Threat Defense The Threat Defense environment is an OpenAI Gym implementation of the environment defined as the toy example in Optimal Defense Pol

Hampus RamstrΓΆm 5 Dec 08, 2022
πŸ† The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)

AI City 2021: Connecting Language and Vision for Natural Language-Based Vehicle Retrieval πŸ† The 1st Place Submission to AICity Challenge 2021 Natural

82 Dec 29, 2022
[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction

PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction International Conference on 3D Vision, 2020 Sai Sagar Jinka1, Rohan

Rohan Chacko 39 Oct 12, 2022
[CVPR 2021] Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach

Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach This is the repo to host the dataset TextSeg and code for TexRNe

SHI Lab 174 Dec 19, 2022
This code finds bounding box of a single human mouth.

This code finds bounding box of a single human mouth. In comparison to other face segmentation methods, it is relatively insusceptible to open mouth conditions, e.g., yawning, surgical robots, etc. T

iThermAI 4 Nov 27, 2022
TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.

TorchMultimodal (Alpha Release) Introduction TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.

Meta Research 663 Jan 06, 2023
Fully Convolutional Refined Auto Encoding Generative Adversarial Networks for 3D Multi Object Scenes

Fully Convolutional Refined Auto-Encoding Generative Adversarial Networks for 3D Multi Object Scenes This repository contains the source code for Full

Yu Nishimura 106 Nov 21, 2022
Data and code for the paper "Importance of Kernel Bandwidth in Quantum Machine Learning"

Reproducibility materials for "Importance of Kernel Bandwidth in Quantum Machine Learning" Repo structure: code contains Python scripts used to genera

Ruslan Shaydulin 3 Oct 23, 2022