DABO: Data Augmentation with Bilevel Optimization

Overview

License

figure figure

DABO: Data Augmentation with Bilevel Optimization [Paper]

The goal is to automatically learn an efficient data augmentation regime for image classification.

Accepted at WACV2021

Table of Contents

Overview

What's new: This method provides a way to automatically learn data augmentation in order to improve the image classification performance. It does not require us to hard code augmentation techniques, which might need domain knowledge or an expensive hyper-parameter search on the validation set.

Key insight: Our method efficiently trains a network that performs data augmentation. This network learns data augmentation by usiing the gradient that flows from computing the classifier's validation loss using an online version of bilevel optimization. We also perform truncated back-propagation in order to significantly reduce the computational cost of bilevel optimization.

How it works: Our method jointly trains a classifier and an augmentation network through the following steps,

figure

  • For each mini batch,a forward pass is made to calculate the training loss.
  • Based on the training loss and the gradient of the training loss, an optimization step is made for the classifier in the inner loop.
  • A forward pass is then made on the classifier with the new weight to calculate the validation loss.
  • The gradient from the validation loss is backpropagated to train the augmentation network.

Results: Our model obtains better results than carefuly hand engineered transformations and GAN-based approaches. Further, the results are competitive against methods that use a policy search on CIFAR10, CIFAR100, BACH, Tiny-Imagenet and Imagenet datasets.

Why it matters: Proper data augmentation can significantly improve generalization performance. Unfortunately, deriving these augmentations require domain expertise or extensive hyper-parameter search. Thus, having an automatic and quick way of identifying efficient data augmentation has a big impact in obtaining better models.

Where to go from here: Performance can be improved by extending the set of learned transformations to non-differentiable transformations. The estimation of the validation loss could also be improved by exploring more the influence of the number of iteration in the inner loop. Finally, the method can be extended to other tasks like object detection of image segmentation.

Experiments

1. Install requirements: Run this command to install the Haven library which helps in managing experiments.

pip install -r requirements.txt

2.1 CIFAR10 experiments: The followng command runs the training and validation loop for CIFAR.

python trainval.py -e cifar -sb ../results -d ../data -r 1

where -e defines the experiment group, -sb is the result directory, and -d is the dataset directory.

2.2 BACH experiments: The followng command runs the training and validation loop on BACH dataset.

python trainval.py -e bach -sb ../results -d ../data -r 1

where -e defines the experiment group, -sb is the result directory, and -d is the dataset directory.

3. Results: Display the results by following the steps below,

figure

Launch Jupyter by running the following on terminal,

jupyter nbextension enable --py widgetsnbextension
jupyter notebook

Then, run the following script on a Jupyter cell,

from haven import haven_jupyter as hj
from haven import haven_results as hr
from haven import haven_utils as hu

# path to where the experiments got saved
savedir_base = ''
exp_list = None

# exp_list = hu.load_py().EXP_GROUPS[]
# get experiments
rm = hr.ResultManager(exp_list=exp_list, 
                      savedir_base=savedir_base, 
                      verbose=0
                     )
y_metrics = ['test_acc']
bar_agg = 'max'
mode = 'bar'
legend_list = ['model.netA.name']
title_list = 'dataset.name'
legend_format = 'Augmentation Netwok: {}'
filterby_list = {'dataset':{'name':'cifar10'}, 'model':{'netC':{'name':'resnet18_meta_2'}}}

# launch dashboard
hj.get_dashboard(rm, vars(), wide_display=True)

Citation

@article{mounsaveng2020learning,
  title={Learning Data Augmentation with Online Bilevel Optimization for Image Classification},
  author={Mounsaveng, Saypraseuth and Laradji, Issam and Ayed, Ismail Ben and Vazquez, David and Pedersoli, Marco},
  journal={arXiv preprint arXiv:2006.14699},
  year={2020}
}
Owner
ElementAI
ElementAI
Implementation of Auto-Conditioned Recurrent Networks for Extended Complex Human Motion Synthesis

acLSTM_motion This folder contains an implementation of acRNN for the CMU motion database written in Pytorch. See the following links for more backgro

Yi_Zhou 61 Sep 07, 2022
OneShot Learning-based hotword detection.

EfficientWord-Net Hotword detection based on one-shot learning Home assistants require special phrases called hotwords to get activated (eg:"ok google

ANT-BRaiN 102 Dec 25, 2022
Reviving Iterative Training with Mask Guidance for Interactive Segmentation

This repository provides the source code for training and testing state-of-the-art click-based interactive segmentation models with the official PyTorch implementation

Visual Understanding Lab @ Samsung AI Center Moscow 406 Jan 01, 2023
Hepsiburada - Hepsiburada Urun Bilgisi Cekme

Hepsiburada Urun Bilgisi Cekme from hepsiburada import Marka nike = Marka("nike"

Ilker Manap 8 Oct 26, 2022
An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.

简介 通过PaddlePaddle框架复现了论文 Real-time Convolutional Neural Networks for Emotion and Gender Classification 中提出的两个模型,分别是SimpleCNN和MiniXception。利用 imdb_crop

8 Mar 11, 2022
Simple Tensorflow implementation of "Adaptive Convolutions for Structure-Aware Style Transfer" (CVPR 2021)

AdaConv — Simple TensorFlow Implementation [Paper] : Adaptive Convolutions for Structure-Aware Style Transfer (CVPR 2021) Note This repository does no

Junho Kim 26 Nov 18, 2022
A variational Bayesian method for similarity learning in non-rigid image registration (CVPR 2022)

A variational Bayesian method for similarity learning in non-rigid image registration We provide the source code and the trained models used in the re

daniel grzech 14 Nov 21, 2022
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
Least Square Calibration for Peer Reviews

Least Square Calibration for Peer Reviews Requirements gurobipy - for solving convex programs GPy - for Bayesian baseline numpy pandas To generate p

Sigma <a href=[email protected]"> 1 Nov 01, 2021
Deep metric learning methods implemented in Chainer

Deep Metric Learning Implementation of several methods for deep metric learning in Chainer v4.2.0. Proxy-NCA: No Fuss Distance Metric Learning using P

ronekko 156 Nov 28, 2022
[CVPR22] Official codebase of Semantic Segmentation by Early Region Proxy.

RegionProxy Figure 2. Performance vs. GFLOPs on ADE20K val split. Semantic Segmentation by Early Region Proxy Yifan Zhang, Bo Pang, Cewu Lu CVPR 2022

Yifan 54 Nov 29, 2022
ChebLieNet, a spectral graph neural network turned equivariant by Riemannian geometry on Lie groups.

ChebLieNet: Invariant spectral graph NNs turned equivariant by Riemannian geometry on Lie groups Hugo Aguettaz, Erik J. Bekkers, Michaël Defferrard We

haguettaz 12 Dec 10, 2022
A Deep Learning Framework for Neural Derivative Hedging

NNHedge NNHedge is a PyTorch based framework for Neural Derivative Hedging. The following repository was implemented to ease the experiments of our pa

GUIJIN SON 17 Nov 14, 2022
SAAVN - Sound Adversarial Audio-Visual Navigation,ICLR2022 (In PyTorch)

SAAVN SAAVN Code release for paper "Sound Adversarial Audio-Visual Navigation,IC

YinfengYu 10 Aug 30, 2022
Code implementation of Data Efficient Stagewise Knowledge Distillation paper.

Data Efficient Stagewise Knowledge Distillation Table of Contents Data Efficient Stagewise Knowledge Distillation Table of Contents Requirements Image

IvLabs 112 Dec 02, 2022
Chinese Advertisement Board Identification(Pytorch)

Chinese-Advertisement-Board-Identification. We use YoloV5 to extract the ROI of the location of the chinese word. Next, we sort the bounding box and recognize every chinese words which we extracted.

Li-Wei Hsiao 12 Jul 21, 2022
This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Motion .

ROSEFusion 🌹 This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Moti

219 Dec 27, 2022
The source code of CVPR 2019 paper "Deep Exemplar-based Video Colorization".

Deep Exemplar-based Video Colorization (Pytorch Implementation) Paper | Pretrained Model | Youtube video 🔥 | Colab demo Deep Exemplar-based Video Col

Bo Zhang 253 Dec 27, 2022
Code and data for the paper "Hearing What You Cannot See"

Hearing What You Cannot See: Acoustic Vehicle Detection Around Corners Public repository of the paper "Hearing What You Cannot See: Acoustic Vehicle D

TU Delft Intelligent Vehicles 26 Jul 13, 2022
Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains

Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains This is an accompanying repository to the ICAIL 2021 pap

4 Dec 16, 2021