[TIP 2020] Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion

Overview

Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion

Code for Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion. To acquire dataset, please contact [email protected].

Introduction

We proposed a unified network called CorrFusionNet for scene change detection. The proposed CorrFusionNet firstly extracts the features of the bi-temporal inputs with deep convolutional networks. Then the extracted features will be projected into a lower dimension space to computed the instance level canonical correlation. The cross-temporal fusion will be performed based on the computed correlation in the CorrFusion module. The final scene classification and scene change results are obtained with softmax activation layers. In the objective function, we introduced a new formulation for calculating the temporal correlation. The visual results and quantitative assessments both demonstrated that our proposed CorrFusionNet could outperform other scene change detection methods and some state-of-the-art methods for image classification.

CorrFusion Module

  • The proposed CorrFusion module:
  • The proposed CorrFusionNet:

Requirements

scipy==1.1.0
matplotlib==3.0.3
h5py==2.8.0
numpy==1.16.3
tensorflow_gpu==1.8.0
Pillow==6.2.1
scikit_learn==0.21.3

Data

  • Overview of our Wuhan dataset

The images are stored in npz format.

├─trn
│      0-5000.npz
│      10000-15000.npz
│      15000-16488.npz
│      5000-10000.npz
│
├─tst
│      0-4712.npz
│
└─val
       0-2355.npz

Usage

Install the requirements

pip install -r requirements.txt

Run the training code

python train_cnn.py [-h] [-g GPU] [-b BATCH_SIZE] [-e EPOCHES]
                    [-n NUM_CLASSES] [-tb USE_TFBOARD] [-sm SAVE_MODEL]
                    [-log SAVE_LOG] [-trn TRN_DIR] [-tst TST_DIR]
                    [-val VAL_DIR] [-lpath LOG_PATH] [-mpath MODEL_PATH]
                    [-tbpath TB_PATH] [-rpath RESULT_PATH]

(see parser.py)

Evaluate on a trained model:

  • Download a trained model here.

  • Evaluation

python evaluate_model.py [-h] [-g GPU] [-m MODEL_DIR] [-tst TST_DIR]
                         [-val VAL_DIR]

optional arguments:
  -h, --help            show this help message and exit
  -g GPU, --gpu GPU     gpu device ID
  -m MODEL_DIR, --model_dir MODEL_DIR
                        model directory
  -tst TST_DIR, --tst_dir TST_DIR
                        testing file dir
  -val VAL_DIR, --val_dir VAL_DIR
                        validation file dir

Results

  • The results of quantitative assessments:
  • Predictions on our dataset:

Contact

For any questions, you're welcomed to contact Lixiang Ru.

Owner
Lixiang Ru
@rulixiang
Lixiang Ru
Bagua is a flexible and performant distributed training algorithm development framework.

Bagua is a flexible and performant distributed training algorithm development framework.

786 Dec 17, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrai

Hugging Face 77.4k Jan 05, 2023
PyTorch Code for the paper "VSE++: Improving Visual-Semantic Embeddings with Hard Negatives"

Improving Visual-Semantic Embeddings with Hard Negatives Code for the image-caption retrieval methods from VSE++: Improving Visual-Semantic Embeddings

Fartash Faghri 441 Dec 05, 2022
DeepDiffusion: Unsupervised Learning of Retrieval-adapted Representations via Diffusion-based Ranking on Latent Feature Manifold

DeepDiffusion Introduction This repository provides the code of the DeepDiffusion algorithm for unsupervised learning of retrieval-adapted representat

4 Nov 15, 2022
This is an official implementation of our CVPR 2021 paper "Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression" (https://arxiv.org/abs/2104.02300)

Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression Introduction In this paper, we are interested in the bottom-up paradigm of estima

HRNet 367 Dec 27, 2022
A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking.

BeatNet A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking. This repository

Mojtaba Heydari 157 Dec 27, 2022
FB-tCNN for SSVEP Recognition

FB-tCNN for SSVEP Recognition Here are the codes of the tCNN and FB-tCNN in the paper "Filter Bank Convolutional Neural Network for Short Time-Window

Wenlong Ding 12 Dec 14, 2022
Official code for "Towards An End-to-End Framework for Flow-Guided Video Inpainting" (CVPR2022)

E2FGVI (CVPR 2022) English | 简体中文 This repository contains the official implementation of the following paper: Towards An End-to-End Framework for Flo

Media Computing Group @ Nankai University 537 Jan 07, 2023
An API-first distributed deployment system of deep learning models using timeseries data to analyze and predict systems behaviour

Gordo Building thousands of models with timeseries data to monitor systems. Table of content About Examples Install Uninstall Developer manual How to

Equinor 26 Dec 27, 2022
code for the ICLR'22 paper: On Robust Prefix-Tuning for Text Classification

On Robust Prefix-Tuning for Text Classification Prefix-tuning has drawed much attention as it is a parameter-efficient and modular alternative to adap

Zonghan Yang 12 Nov 30, 2022
Automated Evidence Collection for Fake News Detection

Automated Evidence Collection for Fake News Detection This is the code repo for the Automated Evidence Collection for Fake News Detection paper accept

Mrinal Rawat 2 Apr 12, 2022
A light weight data augmentation tool for training CNNs and Viola Jones detectors

hey-daug A light weight data augmentation tool for training CNNs and Viola Jones detectors (Haar Cascades). This tool inflates your data by up to six

Jaiyam Sharma 2 Nov 23, 2019
A setup script to generate ITK Python Wheels

ITK Python Package This project provides a setup.py script to build ITK Python binary packages and infrastructure to build ITK external module Python

Insight Software Consortium 59 Dec 14, 2022
Deep Crop Rotation

Deep Crop Rotation Paper (to come very soon!) We propose a deep learning approach to modelling both inter- and intra-annual patterns for parcel classi

Félix Quinton 5 Sep 23, 2022
Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works

GDAP Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works Environment Python (verified: v3.8) CUDA

45 Oct 29, 2022
Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator

DRL-robot-navigation Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator. Using Twin Delayed Deep Deterministic Policy Gra

87 Jan 07, 2023
Pure python implementation reverse-mode automatic differentiation

MiniGrad A minimal implementation of reverse-mode automatic differentiation (a.k.a. autograd / backpropagation) in pure Python. Inspired by Andrej Kar

Kenny Song 76 Sep 12, 2022
Self-Supervised Speech Pre-training and Representation Learning Toolkit.

What's New Sep 2021: We host a challenge in AAAI workshop: The 2nd Self-supervised Learning for Audio and Speech Processing! See SUPERB official site

s3prl 1.6k Jan 08, 2023
A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

70 Jul 12, 2022
[ICML 2021] Towards Understanding and Mitigating Social Biases in Language Models

Towards Understanding and Mitigating Social Biases in Language Models This repo contains code and data for evaluating and mitigating bias from generat

Paul Liang 42 Jan 03, 2023