🐤 Nix-TTS: An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation

Overview

🐤 Nix-TTS

An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation

Rendi Chevi, Radityo Eko Prasojo, Alham Fikri Aji

This is a repository for our paper, 🐤 Nix-TTS (Submitted to INTERSPEECH 2022). We released the pretrained models, an interactive demo, and audio samples below.

[ 📄 Paper Link] [ 🤗 Interactive Demo] [ 📢 Audio Samples]

Abstract    We propose Nix-TTS, a lightweight neural TTS (Text-to-Speech) model achieved by applying knowledge distillation to a powerful yet large-sized generative TTS teacher model. Distilling a TTS model might sound unintuitive due to the generative and disjointed nature of TTS architectures, but pre-trained TTS models can be simplified into encoder and decoder structures, where the former encodes text into some latent representation and the latter decodes the latent into speech data. We devise a framework to distill each component in a non end-to-end fashion. Nix-TTS is end-to-end (vocoder-free) with only 5.23M parameters or up to 82% reduction of the teacher model, it achieves over 3.26x and 8.36x inference speedup on Intel-i7 CPU and Raspberry Pi respectively, and still retains a fair voice naturalness and intelligibility compared to the teacher model.

Getting Started with Nix-TTS

Clone the nix-tts repository and move to its directory

git clone https://github.com/rendchevi/nix-tts.git
cd nix-tts

Install the dependencies

  • Install Python dependencies. We recommend python >= 3.8
pip install -r requirements.txt 
  • Install espeak in your device (for text tokenization).
sudo apt-get install espeak

Or follow the official instruction in case it didn't work.

Download your chosen pre-trained model here.

Model Num. of Params Faster than real-time* (CPU Intel-i7) Faster than real-time* (RasPi Model 3B)
Nix-TTS (ONNX) 5.23 M 11.9x 0.50x
Nix-TTS w/ Stochastic Duration (ONNX) 6.03 M 10.8x 0.50x

* Here we compute how much the model run faster than real-time as the inverse of Real Time Factor (RTF). The complete table of all models speedup is detailed on the paper.

And running Nix-TTS is as easy as:

from nix.models.TTS import NixTTSInference
from IPython.display import Audio

# Initiate Nix-TTS
nix = NixTTSInference(model_dir = "<path_to_the_downloaded_model>")
# Tokenize input text
c, c_length, phoneme = nix.tokenize("Born to multiply, born to gaze into night skies.")
# Convert text to raw speech
xw = nix.vocalize(c, c_length)

# Listen to the generated speech
Audio(xw[0,0], rate = 22050)

Acknowledgement

Owner
Rendi Chevi
Rendi Chevi
Optimizing synthesizer parameters using gradient approximation

Optimizing synthesizer parameters using gradient approximation NASH 2021 Hackathon! These are some experiments I conducted during NASH 2021, the Neura

Jordie Shier 10 Feb 10, 2022
This repository contains a CBIR system that uses swin transformer to extract image's feature.

Swin-transformer based CBIR This repository contains a CBIR(content-based image retrieval) system. Here we use Swin-transformer to extract query image

JsHou 12 Nov 17, 2022
This repository contains the code for the paper ``Identifiable VAEs via Sparse Decoding''.

Sparse VAE This repository contains the code for the paper ``Identifiable VAEs via Sparse Decoding''. Data Sources The datasets used in this paper wer

Gemma Moran 17 Dec 12, 2022
RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds

RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds This repository contains the code asscoiated

Felix Hensel 14 Dec 12, 2022
PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models

This is the official implementation of the following paper: Torsten Scholak, Nathan Schucher, Dzmitry Bahdanau. PICARD - Parsing Incrementally for Con

ElementAI 217 Jan 01, 2023
thundernet ncnn

MMDetection_Lite 基于mmdetection 实现一些轻量级检测模型,安装方式和mmdeteciton相同 voc0712 voc 0712训练 voc2007测试 coco预训练 thundernet_voc_shufflenetv2_1.5 input shape mAP 320

DayBreak 39 Dec 05, 2022
Implementation of CVPR'2022:Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors

Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors (CVPR 2022) Personal Web Pages | Paper | Project Page This repository contains

151 Dec 26, 2022
People log into different sites every day to get information and browse through these sites one by one

HyperLink People log into different sites every day to get information and browse through these sites one by one. And they are exposed to advertisemen

0 Feb 17, 2022
Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature

Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature Q. Wan, L. Gao, X. Li and L. Wen, "Industrial Image Anomaly

smiler 6 Dec 25, 2022
Make Watson Assistant send messages to your Discord Server

Make Watson Assistant send messages to your Discord Server Prerequisites Sign up for an IBM Cloud account. Fill in the required information and press

1 Jan 10, 2022
This repository contains PyTorch models for SpecTr (Spectral Transformer).

SpecTr: Spectral Transformer for Hyperspectral Pathology Image Segmentation This repository contains PyTorch models for SpecTr (Spectral Transformer).

Boxiang Yun 45 Dec 13, 2022
Point detection through multi-instance deep heatmap regression for sutures in endoscopy

Suture detection PyTorch This repo contains the reference implementation of suture detection model in PyTorch for the paper Point detection through mu

artificial intelligence in the area of cardiovascular healthcare 3 Jul 16, 2022
Boston House Prediction Valuation Tool

Boston-House-Prediction-Valuation-Tool From Below Anlaysis The Valuation Tool is Designed Correlation Matrix Regrssion Analysis Between Target Vs Pred

0 Sep 09, 2022
OpenGAN: Open-Set Recognition via Open Data Generation

OpenGAN: Open-Set Recognition via Open Data Generation ICCV 2021 (oral) Real-world machine learning systems need to analyze novel testing data that di

Shu Kong 90 Jan 06, 2023
The "breathing k-means" algorithm with datasets and example notebooks

The Breathing K-Means Algorithm (with examples) The Breathing K-Means is an approximation algorithm for the k-means problem that (on average) is bette

Bernd Fritzke 75 Nov 17, 2022
A 3D Dense mapping backend library of SLAM based on taichi-Lang designed for the aerial swarm.

TaichiSLAM This project is a 3D Dense mapping backend library of SLAM based Taichi-Lang, designed for the aerial swarm. Intro Taichi is an efficient d

XuHao 230 Dec 19, 2022
DeepLearning Anomalies Detection with Bluetooth Sensor Data

Final Year Project. Constructing models to create offline anomalies detection using Travel Time Data collected from Bluetooth sensors along the route.

1 Jan 10, 2022
An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models.

An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models. Hyperactive: is very easy to lear

Simon Blanke 422 Jan 04, 2023
auto-tuning momentum SGD optimizer

YellowFin YellowFin is an auto-tuning optimizer based on momentum SGD which requires no manual specification of learning rate and momentum. It measure

Jian Zhang 288 Nov 19, 2022
Official code for "Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes", CVPR2022

[CVPR 2022] Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes Dongkwon Jin, Wonhui Park, Seong-Gyun Jeong, Heeyeon Kwon, and Cha

Dongkwon Jin 106 Dec 29, 2022